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Abstract—Although large language models are used in speech 
recognition  and  machine  translation  applications,  OCR 
systems are “far behind” in their use of language models. The 
reason for this is not the laggardness of the OCR community, 
but  the  fact  that,  at  high  accuracies,  a  frequency-based 
language  model  can  do  more  damage  than  good,  unless 
carefully  applied.  This  paper  presents  an  analysis  of  this 
discrepancy with the help of the Google Books n-gram Corpus, 
and concludes that noisy-channel models that closely model the 
underlying classifier and segmentation errors are required.
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I.  INTRODUCTION

Language models are essential in OCR applications. In 
English, the I/l/1 and O/0 ambiguities alone prove the point, 
so OCR systems have had both word-lists  and character n-
grams for two decades[1]. Yet the most common question 
addressed to the author over more than two decades in OCR 
is: “Why don’t you use a dictionary?” Users continue to see 
“stupid” errors,  where an obvious dictionary word is mis-
recognized. If a spelling checker can find the correct word, 
surely a better language model correctly integrated with the 
shape classifier would be able to do much better?

The answer is that the weight of the language model is 
optimized  for  average  accuracy,  and  that  to  increase  its 
weight  would  fix  some  of  the  obvious  errors,  but  would 
increase  the  rate  of  hallucination  of  incorrect  dictionary 
words. While this ought to be true for any optimal system, it 
says nothing about the effect of increasing the sophistication 
of the language model,  and with that the selectivity of its 
corrections, which should improve the optimal accuracy.

Speech  recognition  systems  have  been  using  more 
sophisticated  language  models  than  OCR  systems  for 
decades[2][3],  but  OCR systems have not followed. There 
are several possible reasons for this dichotomy of methods:

 With roots in the 1980s, software OCR applications 
have a small memory footprint, and find it hard to 
justify the factor of 100 or more increase in memory 
required to add larger language models.

 OCR researchers have tried larger language models, 
but found them to be unsuccessful.  Since negative 
results are rarely reported, this has remained a well-
kept “secret” of the OCR community.

 OCR researchers are laggards, and have not put in 
the  effort  necessary  to  get  the  most  out  of  better 
language models.

The success of speech systems with language models[4], 
and the BBN Byblos system[5] with Arabic OCR makes the 

second reason above “impossible.” In this paper, we set out 
to investigate the factors that affect the optimal accuracy in 
an  OCR system  that  uses  a  language  model,  and  how  it 
might  be possible that  language models  are  less  useful  to 
OCR than to speech recognition systems. The investigation 
applies a simplified model of an OCR shape classifier and 
different  language  models  (defined  in  Section  III)  to  the 
large Google Books n-gram Corpus[6] of 1011 words.

II. BACKGROUND AND ZIPF'S LAW

Zipf's law[7] states that when the words in a language are 
ranked by decreasing frequency, the word with rank n has a 
frequency proportional  to 1/n.  Consequently the 100 most 
frequent words in English account for more than a third of all 
words in a corpus. Frequent words are so consistent that they 
form  the  foundation  of  attacks  on  simple  ciphers[8],  and 
similar methods have been applied more than once[9][10] to 
OCR text with no initial classifier training.

The other end of the 1/n distribution is the “long tail” and 
indicates  that  a  large  language  model  is  never  complete, 
however large it may be, so there will always be words or 
phrases that fool a language model by being improbable.

For example, consider 'arıd' which could be 'and' with the 
'n' broken, or 'arid' with the dot missing from the 'i'. Since 
'and' is much more frequent than 'arid,' the language model 
would need decisive context to be able to accept 'arid.' Yet 
in: 'Capability Brown terms  arıd conditions ...,' most humans 
and language models, would still prefer 'and' without either 
the continuation '... as annual rainfall of less than ...' or the 
knowledge  that  Capability  Brown  was  an  18th Century 
English landscape gardener.

The previous example is concocted, but a reality is even 
more bizarre. At one point in its development, Tesseract[11] 
recognized  '8½”'  as  'oven'  simply  by  extracting  the  top-
choice dictionary word from the n-best lists of the character 
classifier, with the error mapping 8->o, 1/->v, 2->e, “->n.

Anecdotal examples are interesting, but not convincing. 
The data set used in section IV, is the  the Google Books 
English n-gram corpus[6], which consists of roughly 4  106 

unique words in a collection of 1011 total words. The public 
corpus has been filtered[13] to include only words that occur 
in at least 40 books, but the unfiltered version contains more 
than 108 unique words. We split the corpus into a Dictionary 
D and a test Corpus C. WC is a truth word of m symbols or 
shapes and ŴD is a candidate result word.

III. METHODOLOGY

To provide a reasonably simple analysis, in this paper we 
consider the case of an isolated shape classifier, combined 
with a language model that  has a word  n-gram frequency 



model (1  ≤ n ≤ 3) or a binary  n-gram dictionary model. In 
each case, the shape classifier offers a list of shapes, each 
with a “probability.” HMM-based models that allow a shape 
to  consist  of  multiple  model  states,  such  as  the  BBN 
system[5] are  not  considered.  Choices  in  the  simplifying 
assumptions have been made on the side of over-stating the 
final  accuracy,  and thus providing an upper bound on the 
improvements that can be made with a language model.

A. Classifier Model

For each shape classified, (a shape may be anything from 
a glyph to a grapheme cluster) the shape classifier returns a 
top choice shape stc with probability p(stc) and also all other 
shapes in the shape set si : 0 ≤ i < Ns ,  i ≠ tc with probability 
p(si), with Ns the size of the shape set. For simplicity, p(si) is 
equal for all  i ≠ tc i.e. all shapes other than the top choice 
have equal probability. Furthermore, this relationship holds 
whether  stc is correct or not, i.e. the classifier is equally as 
confident in its errors than its correct choices.

This classifier model is a gross simplification. In any real 
OCR  system,  one  would  expect  the  shape  classifier  to 
occasionally  return  multiple  shapes  with  almost  equal,  or 
even exactly equal probabilities, for example for I/l/1. One 
would  also  hope  that  the  correct  answer,  if  not  the  top 
choice, would at least be near the top choice.  While often 
true, it is also true that an incorrect choice is often near the 
correct choice, (eg. with I/l/1) and it is also often the case 
that the correct answer is nowhere to be found in the n-best 
list  provided by the shape classifier.  The only chance  the 
language model has to recover from such catastrophic errors 
is  to  allow  wildcards.  The  simplified  model  used  here 
essentially allows the language model  to use wildcards  in 
every case, and weights control how readily they are applied.

To  simplify  further,  we  assume that  the  shapes  to  be 
recognized  are  perfectly  segmented.  We therefore  call  the 
concatenation of the top-choice classifier shapes sTC,j at each 
position  j [1,  m]  the  Top-choice  Classifier  Word,  WTC. 
Although also  a  gross  simplification,  and  segmentation  is 
necessary in a real OCR system, the error model does not 
include any segmentation errors, so segmentation errors do 
not  need  to  be  corrected,  and  adding  them  would  only 
increase  the  scope  for  the  language  model  to  hallucinate 
incorrect dictionary words.

Another  simplifying assumption is that  shape classifier 
errors  are  statistically  independent.  In  reality  errors  often 
occur  in  bursts  due  to  image  quality  problems,  but  the 
assumption of statistical independence allows the following 
simple  analysis  of  the  shape  vs.  word  error  rates:  if  the 
probability of a top-choice shape classifier error is  pe, and 
errors are statistically independent, then the probability of a 
single top-choice error in W of length m is mpe(1–pe )m–1 and 
the total probability of error is 1–(1–pe )m . 

B. Word n-gram Language Model

The language model chooses the best path through the 
segmentation graph that optimizes the combined probability, 
using the log-linear model[12] to weight the language model 
against the shape classifier.  For  n>1 a beam search would 
normally be used to choose the overall few-best sequence of 
words,  but  since  C is  a  collection  of  n-grams  instead  of 
flowing text, the treatment for n>1 is simplified to hold n-1 

of  the  words  constant  (the  context)  and  consider  only  a 
single word for error simulation/correction. The context thus 
partitions C and D into many separate cases in combination 
with the word length m.

Since  we  have  no  segmentation  errors,  The  language 
model chooses the best path through the lattice such that:

cost=−wLM ln p  W −wSM ∑
j=1

m

ln p  si , j 

is minimized for the best word  Ŵ, with  i chosen for each  j 
such that  si,j  spells  Ŵ and  p(Ŵ) being the language model 
probability for  Ŵ. wLM,  wSM are respective  weights for  the 
language model and shape model.  A more  optimal model 
might use a different value of wLM for each word length.

If we let  r  =  p(W)/p(WTC), and assume a single shape 
error  in  WTC,  then  the  language  model  can  correct  it  by 
replacing a single top-choice shape sTC,k in position k in word 
WTC, with a lower choice sLM,k in word W, provided that:

ln r
wSM

wLM

ln
p  sTC , k 

ps LM ,k 
∑ j≠k

ln p s ij  

This  model  suggests  that  it  would  be  interesting  to 
explore  the  correcting  power  of  the  language  model  as  a 
function  of  ln(r)  i.e.  the  log  of  frequency  ratio  between 
correct and incorrect words. For example consider  W= 'the,' 
then the language model can correct an error, such as 'thc' if 
ln  p('the')/p('thc')  is  enough  to  overcome  the  classifier 
confidence of 'c' against 'e' in (2).

C. Binary n-gram Dictionary Language Model

With a binary dictionary, the language model can tell if a 
word is included in the dictionary (IID), or out of dictionary 
(OOD). No frequency information is available. To combine 
the language model with the shape classifier, an OCR system 
such as Tesseract[11] will search the classifier results to find 
the most classifier-probable IID word. A weight wIID controls 
the balance between  WTC and the most probable IID word. 
With  the  simplified  classifier  model  described  above,  the 
binary dictionary is completely disabled if  wIID  <  p(stc)/p(si) 
and wildcarding otherwise, since all non-top-choice shapes 
are  equally  probable.  We  therefore  ignore  wIID  and  allow 
wildcarding. If the wildcards produce  d IID words, one of 
which is correct, then the model chooses randomly between 
them and obtains the correct word with probability 1/d.

This  model  suggests  that  the  correcting  power  of  the 
binary  dictionary  will  be  dependent  on  the  size  of  the 
dictionary,  so  we  explore  the  correcting  power  of  the 
dictionary as a function of dictionary size.

IV. EXPERIMENTS

Experiments  were  performed  on  the  Google  Books  n-
gram English corpus, which was split by alternate decades. 
Books published in odd decades were used to create D, and 
books published in even decades were used for C.

A. Word n-gram Frequency Models

For  the  frequency-based  language  models,  the 
correctability ratio at position  j [1, m] of a word W is:



r j=min  p W / p W : W ∈Ω W , j  , W≠W ,
r j= p W /if Ω W , j ={W }



where  Ω(W, j)  is the set of words produced by a wildcard 
substitution over  D at  position  j in word  W, and  ε is  the 
probability of a word that occurs once in D. In words W is at 
least rj times as frequent as its nearest wildcard competitor.

Analogously, the corruptability ratio,

rc=max p  W / p W : j∈[1, m] , W ∈W , j  

defines the margin by which an incorrect, but more probable 
word beats the correct word. For each corpus word  W with 
frequency  w, the final word error rate histogram for shape 
error  rate  accumulates  the  values  shown  in  Table  I  as  a 
function  of  log  r,  and  shows  the  trade-off  between 
correctability and corruptability.

This  analysis  ignores  the  possibility  that  the  shape 
classifier  makes  an  error  at  one  position  in  W,  and  the 
language  model  wildcards  at  another  position,  making  a 
more  frequent  word  than  correcting  the  original  shape 
classifier error. This is a relatively low probability event, but 
makes the final error an under-estimate.

B. Binary Language Model

In  the  binary  models,  corrections  are  only  attempted 
when WTC is OOD. At position j of a word  W of length m 
shapes,  we  estimate  the  probability  of  IID  hallucination, 
where a shape classifier error creates an incorrect dictionary 
word, as h=d/Ns where d=|Ω(W, j)|, being the fraction of the 
shape set that can produce an IID word. A word with a single 
shape  error  is  correctable with  probability  pc=(1–h)/d, 
provided that  WΩ(W, j), and assuming that the language 
model chooses randomly among Ω(W, j).

If  ŴΩ(W, j),  Ŵ W p(W) < p(Ŵ), then W will be 
corrupted when the dictionary contains Ŵ but not W, i.e. the 
size  threshold lies  between p(W) and  p(Ŵ). We therefore 
require the max frequency of any incorrect wildcard word:

x c=max log p  W : j∈[1, m ] , W ∈W , j , W≠W 

The x-axis of the histograms in Fig. 2 is the log of the 
size of the dictionary, but the word error rate histogram for 
shape error rate pe accumulates values shown in Table II as a 
function of x=log p(Ŵ) : Ŵ Ω(W, j) as a histogram bucket 
proxy for dictionary size,  and the actual  dictionary size is 
calculated using the same buckets.

C. Problems of Coverage

The filtered corpus includes only n-grams that occur in at 
least 40 different books[6][13],  and the coverage of D over

TABLE I. WORD ERROR RATE HISTOGRAM FOR FREQUENCY-BASED MODELS

Value Range Description

w(1–(1–pe )n) 0 ≤ r ≤ ∞
Probability of one or more shape classifier 
errors.

w(1–pe )n 0 ≤ r ≤ rc
Top-choice  classifier  correct,  but 
corrupted by language model.

-wpe(1–pe )n-1 0 ≤ r ≤ rj
Single  error  at  position  j  occurs  and  is 
corrected. Applied to each j [1, n].

TABLE II. WORD ERROR RATE HISTOGRAM FOR BINARY MODELS

Value Range Description

w(1–(1–pe )n) -∞ ≤ x ≤ 0
Probability of one or more 
shape classifier errors.

w(1–pe )n log p(W) < x < xc

Top-choice  classifier 
correct,  but  corrupted  by 
language model.

-w(1–h)pe(1–pe )n-1/d -∞ ≤ x ≤ log p(W)
Single  error  at  position  j 
occurs  and  is  corrected. 
Applied to each j [1, n].

C exceeds 99.99%, even on the 3-grams. This is unrealistic 
in real OCR data, so the experiments were re-run using the 
raw corpus. This reduced the coverage for the 1-, 2- and 3-
grams to 99.76%, 97.55%, and 88.66% respectively.

D. Binary-Frequency Hybrid

A clear result from the frequency-based language model 
is  that  correct  words  are  corrupted  too frequently.  As the 
error rate of the shape classifier falls, this corruption effect 
starts to dominate unless the weight of the language model is 
turned down so low that it hardly has any effect. (See Fig. 1.) 
Conversely  the  binary  model  benefits  more  from a  larger 
dictionary  as  the  error  rate  falls.  This  suggests  a  simple 
binary hybrid model, in which the language model does not 
attempt  to  change  an  IID  WTC,  whether  hallucination  or 
correct, but when it does correct a word, uses the frequency 
to  choose  the  result.  The  corruptability  ratio  is  slightly 
different, since the word being corrected is always OOD:

rc=max  p  W /: j∈[1, n ] , W ∈W , j   

where  ε  is  the frequency associated with an OOD word - 
corresponding to a count of 1 in the training corpus. As with 
the  frequency-based  model,  the  histogram  accumulates 
values as a function of log r, shown in Table III.

V. RESULTS

Fig.  1  shows the final  word  error  rates  of  the n-gram 
frequency models, for shape classifier error rates of 2%, 1% 
and 0.2%, as a function of log r from (2). Fig. 1(a), (b), (c) 
use a word 1-, 2- and 3-gram frequency model respectively, 
on the filtered corpus, and Fig. 3 shows the results for the 
raw corpus. At the y-axis, the language model substitutes a 
more frequent word, at the rate of the shape error, if one is 
available  within  a  single  wildcard  substitution.  As  r 
increases,  the  corruption  rate  decreases,  but  also  the 
correction rate, until at  r=∞, the output error rate is just the 
input shape classifier error rate. At low input error rate, the 
optimum point is little better than the input error rate, as the 
corruption rate falls off asymptotically, due to the long tail of 
the Zipf distribution, to a non-zero value: Zipf's Wall.

TABLE III. WORD ERROR RATE HISTOGRAM FOR BINARY HYBRID MODELS

Value Range Description

w(1–(1–pe )n) 0 ≤ r ≤ ∞
Probability  of  one  or  more  shape 
classifier errors.

w(1–pe )n 0 ≤ r ≤ rc
Top-choice  classifier  correct,  but 
corrupted by language model.

-w(1–h)pe(1–pe )n-1 0 ≤ r ≤ rj

Single error at position j is OOD and 
is corrected. Applied to each  j  [1, 
n].



Fig.  2  shows the  final  word  error  rates  of  the  binary 
models, for shape classifier error rates of 2%, 1% and 0.2%, 
as a function of ln(dictionary size). Fig. 2(a), (b), (c) use a 
word  1-,  2-  and  3-gram  binary  model  respectively,  and 
similarly Fig. 4 shows the results for the raw corpus. The 
corruption rate decreases with a larger dictionary, as more 
words are considered IID and not changed, but the correction 
rate also decreases, since more wildcard words can be found. 
For the 2- and 3-gram models, the optimum error rate is only 
obtained at the highest dictionary size. The sudden drop in 
Fig. 4(c) is caused by the addition of the words with a count 
of 1 in the Dictionary corpus D.

Fig.  5  shows the  final  word  error  rates  of  the  hybrid 
model, for shape classifier error rates of 2%, 1% and 0.2%, 
as a function of log r. Fig. 5(a), (b), (c) use a word 1-, 2- and 
3-gram  model  respectively.  A  summary  of  the  minimum 
error points for all the models is given in Table IV. Table IV 
and Fig. 5 show the advantage of the simple non-linear rule 
that an IID word should not be touched.

VI. CONCLUSION: SPEECH VS OCR AND FURTHERWORK

The fundamental  limitation in the frequency models is 
the assumption that there is a close relationship between the 
probability that a word occurs in the language (given some 
current  context  for  n-grams with  n>1)  and the probability 
that a word is correct. If the classifier (shape for OCR, or 
acoustic for speech) is weak, then the most frequent word is 
the best guess because it wins on average. A weak classifier 
will also frequently hallucinate incorrect dictionary words, so 
it  is  much more powerful  to predict  a word based on the 
previous  n-1  words.  When  the  classifier  is  fundamentally 
more accurate, the balance changes, and the most probable 
word is no longer the best guess,  even in the context of the  
previous  n-1  words. If  the  classifier  top choice  is  an  IID 
word, then it is much more likely to be correct than the most 
probable  word  within  edit  distance  1.  This  explains  the 
dichotomy of approaches between speech and OCR.

Complex  language models  are  highly  beneficial  at  the 
high errors rates seen by acoustic classifiers for speech, but 
OCR shape classifiers are typically much more accurate (for 
Latin-based languages such as English), so language models 
are  less  effective.  For  languages  where  OCR is  still  at  a 
higher  error  rate,  such  as  Arabic  and  Hindi,  powerful 
language models are still very useful.

Neither  frequency-based  language  models  nor the  log-
linear model can be declared dead for OCR however; the

TABLE IV. SUMMARY OF MINIMA OF WORD ERROR RATES

Corpus Filtered Raw
Shape error rate 2.00% 1.00% 0.20% 2.00% 1.00% 0.20%
Input word error rate 8.40% 4.20% 0.84% 9.10% 4.60% 0.91%
Model n-gram Minimal output word error rate (%)
Freq. 1 4.54 2.50 0.65 5.01 2.76 0.73
Freq. 2 3.90 2.22 0.61 3.82 2.13 0.57
Freq. 3 2.71 1.65 0.52 3.23 1.72 0.43
Binary 1 4.73 2.58 0.60 5.77 3.17 0.77
Binary 2 3.69 1.80 0.35 5.08 2.56 0.51
Binary 3 1.78 0.82 0.15 3.83 1.89 0.37
Hybrid 1 2.87 1.37 0.26 4.64 2.28 0.45
Hybrid 2 1.28 0.56 0.10 2.00 0.94 0.18
Hybrid 3 0.65 0.24 0.03 1.82 0.86 0.16

binary-frequency  hybrid  showed  that  the  most  frequent 
wildcard word is still  an extremely good best-guess when 
WTC is  OOD,  and it  can still  be expressed  as  a log-linear 
combination, using non-linear feature functions:

cost=−wLM ln p  W −wTC f  W −wSM∑ j
ln p  si , j 

where f(Ŵ) = 0 if Ŵ=WTC D, –1 otherwise.
A  gross  simplification  of  this  experiment  was  the 

classifier error model, in which the language model has to 
guess from the entire character  set. Going forward,  noisy-
channel  models[14] specifically  trained on the substitution 
and segmentation errors of a particular OCR shape classifier, 
such  as  e->c  is  more  likely than  o->x,  would seem more 
appropriate than blind wildcarding. That should reduce the 
frequency  of  hallucinations  of  incorrect  dictionary  words, 
making the language model relatively more powerful.

The  Google  Books  n-gram  corpus  is  available  for 
languages  other  than  English,  and it  would be useful  and 
interesting to compare results for other languages.
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Figure 1. Output word error rate of (a) 1-gram, (b) 2-gram, (c)  3-gram Frequency models on the filtered corpus as a function of log of n-gram frequency 
ratio, with input shape classifier/word error rates of 2%/8.4%, 1%/4.2%, and 0.2%/0.8%.

Figure 2.  Output word error rate of (a) 1-gram, (b) 2-gram, (c)  3-gram Binary models on the filtered corpus as a function of log of n-gram dictionary size, 
with input shape classifier/word error rates of 2%/8.4%, 1%/4.2%, and 0.2%/0.8%.

Figure 3.  Output word error rate of (a) 1-gram, (b) 2-gram, (c)  3-gram Frequency models on the raw corpus as a function of log of n-gram frequency ratio, 
with input shape classifier/word error rates of 2%/9.1%, 1%/4.6%, and 0.2%/0.9%.

Figure 4.  Output word error rate of (a) 1-gram, (b) 2-gram, (c)  3-gram Binary models on the raw corpus as a function of log of n-gram dictionary size, with 
input shape classifier/word error rates of 2%/9.1%, 1%/4.6%, and 0.2%/0.9%.

Figure 5.  Output word error rate of (a) 1-gram, (b) 2-gram, (c)  3-gram Hybrid models on the raw corpus as a function of log of n-gram frequency ratio, with 
input shape classifier/word error rates of 2%/9.1%, 1%/4.6%, and 0.2%/0.9%.


