18 #include "config_auto.h"    24 #include "allheaders.h"    41 const double TrainingSample::kScaleValues[kSampleScaleSize] = {
    47   delete [] micro_features_;
    55   if (fwrite(&class_id_, 
sizeof(class_id_), 1, fp) != 1) 
return false;
    56   if (fwrite(&font_id_, 
sizeof(font_id_), 1, fp) != 1) 
return false;
    57   if (fwrite(&page_num_, 
sizeof(page_num_), 1, fp) != 1) 
return false;
    58   if (!bounding_box_.
Serialize(fp)) 
return false;
    59   if (fwrite(&num_features_, 
sizeof(num_features_), 1, fp) != 1) 
return false;
    60   if (fwrite(&num_micro_features_, 
sizeof(num_micro_features_), 1, fp) != 1)
    62   if (fwrite(&outline_length_, 
sizeof(outline_length_), 1, fp) != 1)
    64   if (fwrite(features_, 
sizeof(*features_), num_features_, fp) != num_features_)
    66   if (fwrite(micro_features_, 
sizeof(*micro_features_), num_micro_features_,
    67              fp) != num_micro_features_)
    69   if (fwrite(cn_feature_, 
sizeof(*cn_feature_), kNumCNParams, fp) !=
    70       kNumCNParams) 
return false;
    88   if (fread(&class_id_, 
sizeof(class_id_), 1, fp) != 1) 
return false;
    89   if (fread(&font_id_, 
sizeof(font_id_), 1, fp) != 1) 
return false;
    90   if (fread(&page_num_, 
sizeof(page_num_), 1, fp) != 1) 
return false;
    91   if (!bounding_box_.
DeSerialize(swap, fp)) 
return false;
    92   if (fread(&num_features_, 
sizeof(num_features_), 1, fp) != 1) 
return false;
    93   if (fread(&num_micro_features_, 
sizeof(num_micro_features_), 1, fp) != 1)
    95   if (fread(&outline_length_, 
sizeof(outline_length_), 1, fp) != 1)
    98     ReverseN(&class_id_, 
sizeof(class_id_));
    99     ReverseN(&num_features_, 
sizeof(num_features_));
   100     ReverseN(&num_micro_features_, 
sizeof(num_micro_features_));
   101     ReverseN(&outline_length_, 
sizeof(outline_length_));
   104   if (num_features_ > UINT16_MAX) 
return false;
   105   if (num_micro_features_ > UINT16_MAX) 
return false;
   108   if (fread(features_, 
sizeof(*features_), num_features_, fp)
   111   delete [] micro_features_;
   112   micro_features_ = 
new MicroFeature[num_micro_features_];
   113   if (fread(micro_features_, 
sizeof(*micro_features_), num_micro_features_,
   114             fp) != num_micro_features_)
   116   if (fread(cn_feature_, 
sizeof(*cn_feature_), kNumCNParams, fp) !=
   117             kNumCNParams) 
return false;
   126     const TBOX& bounding_box,
   146   sample->features_are_indexed_ = 
false;
   147   sample->features_are_mapped_ = 
false;
   154   for (
int i = 0; i < kNumCNParams; ++i)
   155     feature->
Params[i] = cn_feature_[i];
   164   if (index >= 0 && index < kSampleRandomSize) {
   166     const int yshift = kYShiftValues[index / kSampleScaleSize];
   167     double scaling = kScaleValues[index % kSampleScaleSize];
   168     for (uint32_t i = 0; i < num_features_; ++i) {
   171       sample->features_[i].X = ClipToRange<int>(result + 0.5, 0, UINT8_MAX);
   174       sample->features_[i].Y = ClipToRange<int>(result + 0.5, 0, UINT8_MAX);
   183   sample->class_id_ = class_id_;
   184   sample->font_id_ = font_id_;
   185   sample->weight_ = weight_;
   186   sample->sample_index_ = sample_index_;
   187   sample->num_features_ = num_features_;
   188   if (num_features_ > 0) {
   190     memcpy(
sample->features_, features_, num_features_ * 
sizeof(features_[0]));
   192   sample->num_micro_features_ = num_micro_features_;
   193   if (num_micro_features_ > 0) {
   195     memcpy(
sample->micro_features_, micro_features_,
   196            num_micro_features_ * 
sizeof(micro_features_[0]));
   198   memcpy(
sample->cn_feature_, cn_feature_, 
sizeof(*cn_feature_) * kNumCNParams);
   199   memcpy(
sample->geo_feature_, geo_feature_, 
sizeof(*geo_feature_) * 
GeoCount);
   212   if (char_features == 
nullptr) {
   213     tprintf(
"Error: no features to train on of type %s\n",
   220     for (uint32_t f = 0; f < num_features_; ++f) {
   231   delete[] micro_features_;
   232   char_features = char_desc->
FeatureSets[micro_type];
   233   if (char_features == 
nullptr) {
   234     tprintf(
"Error: no features to train on of type %s\n",
   236     num_micro_features_ = 0;
   237     micro_features_ = 
nullptr;
   240     micro_features_ = 
new MicroFeature[num_micro_features_];
   241     for (uint32_t f = 0; f < num_micro_features_; ++f) {
   242       for (
int d = 0; d < 
MFCount; ++d) {
   249   if (char_features == 
nullptr) {
   250     tprintf(
"Error: no CN feature to train on.\n");
   261   if (char_features == 
nullptr) {
   262     tprintf(
"Error: no Geo feature to train on.\n");
   269   features_are_indexed_ = 
false;
   270   features_are_mapped_ = 
false;
   279   features_are_indexed_ = 
true;
   280   features_are_mapped_ = 
false;
   290   features_are_indexed_ = 
false;
   291   features_are_mapped_ = 
true;
   297   for (uint32_t f = 0; f < num_features_; ++f) {
   298     int start_x = features_[f].
X;
   300     double dx = cos((features_[f].Theta / 256.0) * 2.0 * M_PI - M_PI);
   301     double dy = -sin((features_[f].Theta / 256.0) * 2.0 * M_PI - M_PI);
   302     for (
int i = 0; i <= 5; ++i) {
   303       int x = 
static_cast<int>(start_x + dx * i);
   304       int y = 
static_cast<int>(start_y + dy * i);
   305       if (x >= 0 && x < 256 && y >= 0 && y < 256)
   306         pixSetPixel(pix, x, y, 1);
   309   if (unicharset != 
nullptr)
   317   #ifndef GRAPHICS_DISABLED   318   for (uint32_t f = 0; f < num_features_; ++f) {
   321   #endif  // GRAPHICS_DISABLED   329   if (page_pix == 
nullptr)
   331   int page_width = pixGetWidth(page_pix);
   332   int page_height = pixGetHeight(page_pix);
   334   padded_box.
pad(padding, padding);
   336   TBOX page_box(0, 0, page_width, page_height);
   337   padded_box &= page_box;
   338   Box* box = boxCreate(page_box.
left(), page_height - page_box.
top(),
   340   Pix* sample_pix = pixClipRectangle(page_pix, box, 
nullptr);
 
void DisplayFeatures(ScrollView::Color color, ScrollView *window) const
 
const IntFeatureSpace & feature_space() const
 
const int kIntFeatureExtent
 
const int kRandomizingCenter
 
static TrainingSample * CopyFromFeatures(const INT_FX_RESULT_STRUCT &fx_info, const TBOX &bounding_box, const INT_FEATURE_STRUCT *features, int num_features)
 
const int kBlnBaselineOffset
 
TrainingSample * Copy() const
 
bool DeSerialize(bool swap, FILE *fp)
 
void ReverseN(void *ptr, int num_bytes)
 
void ExtractCharDesc(int feature_type, int micro_type, int cn_type, int geo_type, CHAR_DESC_STRUCT *char_desc)
 
static TrainingSample * DeSerializeCreate(bool swap, FILE *fp)
 
Pix * GetSamplePix(int padding, Pix *page_pix) const
 
#define LENGTH_COMPRESSION
 
const TBOX & bounding_box() const
 
void RenderIntFeature(ScrollView *window, const INT_FEATURE_STRUCT *Feature, ScrollView::Color color)
 
const INT_FEATURE_STRUCT * features() const
 
#define ELISTIZE(CLASSNAME)
 
FEATURE_SET FeatureSets[NUM_FEATURE_TYPES]
 
bool Serialize(FILE *fp) const
 
uint32_t num_features() const
 
DLLSYM void tprintf(const char *format,...)
 
float MicroFeature[MFCount]
 
const char * kMicroFeatureType
 
bool Serialize(FILE *fp) const
 
FEATURE NewFeature(const FEATURE_DESC_STRUCT *FeatureDesc)
 
FEATURE_STRUCT * GetCNFeature() const
 
void MapFeatures(const IntFeatureMap &feature_map)
 
const FEATURE_DESC_STRUCT CharNormDesc
 
const char * id_to_unichar(UNICHAR_ID id) const
 
Pix * RenderToPix(const UNICHARSET *unicharset) const
 
bool DeSerialize(bool swap, FILE *fp)
 
void IndexAndSortFeatures(const INT_FEATURE_STRUCT *features, int num_features, GenericVector< int > *sorted_features) const
 
void IndexFeatures(const IntFeatureSpace &feature_space)
 
int MapIndexedFeatures(const GenericVector< int > &index_features, GenericVector< int > *map_features) const
 
const char * kIntFeatureType
 
const GenericVector< int > & indexed_features() const
 
void pad(int xpad, int ypad)
 
TrainingSample * RandomizedCopy(int index) const