tesseract  4.0.0-1-g2a2b
series.cpp
Go to the documentation of this file.
1 // File: series.cpp
3 // Description: Runs networks in series on the same input.
4 // Author: Ray Smith
5 // Created: Thu May 02 08:26:06 PST 2013
6 //
7 // (C) Copyright 2013, Google Inc.
8 // Licensed under the Apache License, Version 2.0 (the "License");
9 // you may not use this file except in compliance with the License.
10 // You may obtain a copy of the License at
11 // http://www.apache.org/licenses/LICENSE-2.0
12 // Unless required by applicable law or agreed to in writing, software
13 // distributed under the License is distributed on an "AS IS" BASIS,
14 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 // See the License for the specific language governing permissions and
16 // limitations under the License.
18 
19 #include "series.h"
20 
21 #include "fullyconnected.h"
22 #include "networkscratch.h"
23 #include "scrollview.h"
24 #include "tprintf.h"
25 
26 namespace tesseract {
27 
28 // ni_ and no_ will be set by AddToStack.
29 Series::Series(const STRING& name) : Plumbing(name) {
30  type_ = NT_SERIES;
31 }
32 
33 // Returns the shape output from the network given an input shape (which may
34 // be partially unknown ie zero).
35 StaticShape Series::OutputShape(const StaticShape& input_shape) const {
36  StaticShape result(input_shape);
37  int stack_size = stack_.size();
38  for (int i = 0; i < stack_size; ++i) {
39  result = stack_[i]->OutputShape(result);
40  }
41  return result;
42 }
43 
44 // Sets up the network for training. Initializes weights using weights of
45 // scale `range` picked according to the random number generator `randomizer`.
46 // Note that series has its own implementation just for debug purposes.
47 int Series::InitWeights(float range, TRand* randomizer) {
48  num_weights_ = 0;
49  tprintf("Num outputs,weights in Series:\n");
50  for (int i = 0; i < stack_.size(); ++i) {
51  int weights = stack_[i]->InitWeights(range, randomizer);
52  tprintf(" %s:%d, %d\n",
53  stack_[i]->spec().string(), stack_[i]->NumOutputs(), weights);
54  num_weights_ += weights;
55  }
56  tprintf("Total weights = %d\n", num_weights_);
57  return num_weights_;
58 }
59 
60 // Recursively searches the network for softmaxes with old_no outputs,
61 // and remaps their outputs according to code_map. See network.h for details.
62 int Series::RemapOutputs(int old_no, const std::vector<int>& code_map) {
63  num_weights_ = 0;
64  tprintf("Num (Extended) outputs,weights in Series:\n");
65  for (int i = 0; i < stack_.size(); ++i) {
66  int weights = stack_[i]->RemapOutputs(old_no, code_map);
67  tprintf(" %s:%d, %d\n", stack_[i]->spec().string(),
68  stack_[i]->NumOutputs(), weights);
69  num_weights_ += weights;
70  }
71  tprintf("Total weights = %d\n", num_weights_);
72  no_ = stack_.back()->NumOutputs();
73  return num_weights_;
74 }
75 
76 // Sets needs_to_backprop_ to needs_backprop and returns true if
77 // needs_backprop || any weights in this network so the next layer forward
78 // can be told to produce backprop for this layer if needed.
79 bool Series::SetupNeedsBackprop(bool needs_backprop) {
80  needs_to_backprop_ = needs_backprop;
81  for (int i = 0; i < stack_.size(); ++i)
82  needs_backprop = stack_[i]->SetupNeedsBackprop(needs_backprop);
83  return needs_backprop;
84 }
85 
86 // Returns an integer reduction factor that the network applies to the
87 // time sequence. Assumes that any 2-d is already eliminated. Used for
88 // scaling bounding boxes of truth data.
89 // WARNING: if GlobalMinimax is used to vary the scale, this will return
90 // the last used scale factor. Call it before any forward, and it will return
91 // the minimum scale factor of the paths through the GlobalMinimax.
92 int Series::XScaleFactor() const {
93  int factor = 1;
94  for (int i = 0; i < stack_.size(); ++i)
95  factor *= stack_[i]->XScaleFactor();
96  return factor;
97 }
98 
99 // Provides the (minimum) x scale factor to the network (of interest only to
100 // input units) so they can determine how to scale bounding boxes.
101 void Series::CacheXScaleFactor(int factor) {
102  stack_[0]->CacheXScaleFactor(factor);
103 }
104 
105 // Runs forward propagation of activations on the input line.
106 // See NetworkCpp for a detailed discussion of the arguments.
107 void Series::Forward(bool debug, const NetworkIO& input,
108  const TransposedArray* input_transpose,
109  NetworkScratch* scratch, NetworkIO* output) {
110  int stack_size = stack_.size();
111  ASSERT_HOST(stack_size > 1);
112  // Revolving intermediate buffers.
113  NetworkScratch::IO buffer1(input, scratch);
114  NetworkScratch::IO buffer2(input, scratch);
115  // Run each network in turn, giving the output of n as the input to n + 1,
116  // with the final network providing the real output.
117  stack_[0]->Forward(debug, input, input_transpose, scratch, buffer1);
118  for (int i = 1; i < stack_size; i += 2) {
119  stack_[i]->Forward(debug, *buffer1, nullptr, scratch,
120  i + 1 < stack_size ? buffer2 : output);
121  if (i + 1 == stack_size) return;
122  stack_[i + 1]->Forward(debug, *buffer2, nullptr, scratch,
123  i + 2 < stack_size ? buffer1 : output);
124  }
125 }
126 
127 // Runs backward propagation of errors on the deltas line.
128 // See NetworkCpp for a detailed discussion of the arguments.
129 bool Series::Backward(bool debug, const NetworkIO& fwd_deltas,
130  NetworkScratch* scratch,
131  NetworkIO* back_deltas) {
132  if (!IsTraining()) return false;
133  int stack_size = stack_.size();
134  ASSERT_HOST(stack_size > 1);
135  // Revolving intermediate buffers.
136  NetworkScratch::IO buffer1(fwd_deltas, scratch);
137  NetworkScratch::IO buffer2(fwd_deltas, scratch);
138  // Run each network in reverse order, giving the back_deltas output of n as
139  // the fwd_deltas input to n-1, with the 0 network providing the real output.
140  if (!stack_.back()->IsTraining() ||
141  !stack_.back()->Backward(debug, fwd_deltas, scratch, buffer1))
142  return false;
143  for (int i = stack_size - 2; i >= 0; i -= 2) {
144  if (!stack_[i]->IsTraining() ||
145  !stack_[i]->Backward(debug, *buffer1, scratch,
146  i > 0 ? buffer2 : back_deltas))
147  return false;
148  if (i == 0) return needs_to_backprop_;
149  if (!stack_[i - 1]->IsTraining() ||
150  !stack_[i - 1]->Backward(debug, *buffer2, scratch,
151  i > 1 ? buffer1 : back_deltas))
152  return false;
153  }
154  return needs_to_backprop_;
155 }
156 
157 // Splits the series after the given index, returning the two parts and
158 // deletes itself. The first part, up to network with index last_start, goes
159 // into start, and the rest goes into end.
160 void Series::SplitAt(int last_start, Series** start, Series** end) {
161  *start = nullptr;
162  *end = nullptr;
163  if (last_start < 0 || last_start >= stack_.size()) {
164  tprintf("Invalid split index %d must be in range [0,%d]!\n",
165  last_start, stack_.size() - 1);
166  return;
167  }
168  Series* master_series = new Series("MasterSeries");
169  Series* boosted_series = new Series("BoostedSeries");
170  for (int s = 0; s <= last_start; ++s) {
171  if (s + 1 == stack_.size() && stack_[s]->type() == NT_SOFTMAX) {
172  // Change the softmax to a tanh.
173  FullyConnected* fc = static_cast<FullyConnected*>(stack_[s]);
174  fc->ChangeType(NT_TANH);
175  }
176  master_series->AddToStack(stack_[s]);
177  stack_[s] = nullptr;
178  }
179  for (int s = last_start + 1; s < stack_.size(); ++s) {
180  boosted_series->AddToStack(stack_[s]);
181  stack_[s] = nullptr;
182  }
183  *start = master_series;
184  *end = boosted_series;
185  delete this;
186 }
187 
188 // Appends the elements of the src series to this, removing from src and
189 // deleting it.
191  ASSERT_HOST(src->type() == NT_SERIES);
192  Series* src_series = static_cast<Series*>(src);
193  for (int s = 0; s < src_series->stack_.size(); ++s) {
194  AddToStack(src_series->stack_[s]);
195  src_series->stack_[s] = nullptr;
196  }
197  delete src;
198 }
199 
200 
201 } // namespace tesseract.
int NumOutputs() const
Definition: network.h:123
int InitWeights(float range, TRand *randomizer) override
Definition: series.cpp:47
void ChangeType(NetworkType type)
int32_t num_weights_
Definition: network.h:305
void AppendSeries(Network *src)
Definition: series.cpp:190
bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, NetworkIO *back_deltas) override
Definition: series.cpp:129
StaticShape OutputShape(const StaticShape &input_shape) const override
Definition: series.cpp:35
void SplitAt(int last_start, Series **start, Series **end)
Definition: series.cpp:160
NetworkType type_
Definition: network.h:299
PointerVector< Network > stack_
Definition: plumbing.h:136
virtual void AddToStack(Network *network)
Definition: plumbing.cpp:82
STRING spec() const override
Definition: series.h:37
bool needs_to_backprop_
Definition: network.h:301
void CacheXScaleFactor(int factor) override
Definition: series.cpp:101
void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, NetworkScratch *scratch, NetworkIO *output) override
Definition: series.cpp:107
int XScaleFactor() const override
Definition: series.cpp:92
DLLSYM void tprintf(const char *format,...)
Definition: tprintf.cpp:37
NetworkType type() const
Definition: network.h:112
Definition: strngs.h:45
bool IsTraining() const
Definition: network.h:115
int RemapOutputs(int old_no, const std::vector< int > &code_map) override
Definition: series.cpp:62
bool SetupNeedsBackprop(bool needs_backprop) override
Definition: series.cpp:79
Series(const STRING &name)
Definition: series.cpp:29
#define ASSERT_HOST(x)
Definition: errcode.h:84