tesseract  5.0.0-alpha-619-ge9db
equationdetect.cpp
Go to the documentation of this file.
1 // File: equationdetect.cpp
3 // Description: Helper classes to detect equations.
4 // Author: Zongyi (Joe) Liu (joeliu@google.com)
5 //
6 // (C) Copyright 2011, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 //
18 
19 #ifdef __MINGW32__
20 #include <limits.h>
21 #endif
22 
23 #include <algorithm>
24 #include <cfloat>
25 #include <limits>
26 #include <memory>
27 
28 // Include automatically generated configuration file if running autoconf.
29 #ifdef HAVE_CONFIG_H
30 #include "config_auto.h"
31 #endif
32 
33 #include "equationdetect.h"
34 
35 #include "bbgrid.h"
36 #include "classify.h"
37 #include "colpartition.h"
38 #include "colpartitiongrid.h"
39 #include "colpartitionset.h"
40 #include <tesseract/helpers.h>
41 #include "ratngs.h"
42 #include "tesseractclass.h"
43 
44 // Config variables.
45 static BOOL_VAR(equationdetect_save_bi_image, false, "Save input bi image");
46 static BOOL_VAR(equationdetect_save_spt_image, false, "Save special character image");
47 static BOOL_VAR(equationdetect_save_seed_image, false, "Save the seed image");
48 static BOOL_VAR(equationdetect_save_merged_image, false, "Save the merged image");
49 
50 namespace tesseract {
51 
53 // Utility ColParition sort functions.
55 static int SortCPByTopReverse(const void* p1, const void* p2) {
56  const ColPartition* cp1 = *static_cast<ColPartition* const*>(p1);
57  const ColPartition* cp2 = *static_cast<ColPartition* const*>(p2);
58  ASSERT_HOST(cp1 != nullptr && cp2 != nullptr);
59  const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
60  return box2.top() - box1.top();
61 }
62 
63 static int SortCPByBottom(const void* p1, const void* p2) {
64  const ColPartition* cp1 = *static_cast<ColPartition* const*>(p1);
65  const ColPartition* cp2 = *static_cast<ColPartition* const*>(p2);
66  ASSERT_HOST(cp1 != nullptr && cp2 != nullptr);
67  const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
68  return box1.bottom() - box2.bottom();
69 }
70 
71 static int SortCPByHeight(const void* p1, const void* p2) {
72  const ColPartition* cp1 = *static_cast<ColPartition* const*>(p1);
73  const ColPartition* cp2 = *static_cast<ColPartition* const*>(p2);
74  ASSERT_HOST(cp1 != nullptr && cp2 != nullptr);
75  const TBOX &box1(cp1->bounding_box()), &box2(cp2->bounding_box());
76  return box1.height() - box2.height();
77 }
78 
79 // TODO(joeliu): we may want to parameterize these constants.
80 const float kMathDigitDensityTh1 = 0.25;
81 const float kMathDigitDensityTh2 = 0.1;
82 const float kMathItalicDensityTh = 0.5;
83 const float kUnclearDensityTh = 0.25;
84 const int kSeedBlobsCountTh = 10;
86 
87 // Returns true if PolyBlockType is of text type or equation type.
89  return PTIsTextType(type) || type == PT_EQUATION;
90 }
91 
95 }
96 
100 }
101 
102 EquationDetect::EquationDetect(const char* equ_datapath,
103  const char* equ_name) {
104  const char* default_name = "equ";
105  if (equ_name == nullptr) {
106  equ_name = default_name;
107  }
108  lang_tesseract_ = nullptr;
109  resolution_ = 0;
110  page_count_ = 0;
111 
112  if (equ_tesseract_.init_tesseract(equ_datapath, equ_name,
114  tprintf("Warning: equation region detection requested,"
115  " but %s failed to load from %s\n", equ_name, equ_datapath);
116  }
117 
118  cps_super_bbox_ = nullptr;
119 }
120 
122 
124  lang_tesseract_ = lang_tesseract;
125 }
126 
127 void EquationDetect::SetResolution(const int resolution) {
128  resolution_ = resolution;
129 }
130 
132  if (to_block == nullptr) {
133  tprintf("Warning: input to_block is nullptr!\n");
134  return -1;
135  }
136 
138  blob_lists.push_back(&(to_block->blobs));
139  blob_lists.push_back(&(to_block->large_blobs));
140  for (int i = 0; i < blob_lists.size(); ++i) {
141  BLOBNBOX_IT bbox_it(blob_lists[i]);
142  for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
143  bbox_it.forward()) {
144  bbox_it.data()->set_special_text_type(BSTT_NONE);
145  }
146  }
147 
148  return 0;
149 }
150 
152  BLOBNBOX *blobnbox, const int height_th) {
153  ASSERT_HOST(blobnbox != nullptr);
154  if (blobnbox->bounding_box().height() < height_th && height_th > 0) {
155  // For small blob, we simply set to BSTT_NONE.
156  blobnbox->set_special_text_type(BSTT_NONE);
157  return;
158  }
159 
160  BLOB_CHOICE_LIST ratings_equ, ratings_lang;
161  C_BLOB* blob = blobnbox->cblob();
162  // TODO(joeliu/rays) Fix this. We may have to normalize separately for
163  // each classifier here, as they may require different PolygonalCopy.
164  TBLOB* tblob = TBLOB::PolygonalCopy(false, blob);
165  const TBOX& box = tblob->bounding_box();
166 
167  // Normalize the blob. Set the origin to the place we want to be the
168  // bottom-middle, and scaling is to make the height the x-height.
169  const float scaling = static_cast<float>(kBlnXHeight) / box.height();
170  const float x_orig = (box.left() + box.right()) / 2.0f, y_orig = box.bottom();
171  std::unique_ptr<TBLOB> normed_blob(new TBLOB(*tblob));
172  normed_blob->Normalize(nullptr, nullptr, nullptr, x_orig, y_orig, scaling, scaling,
173  0.0f, static_cast<float>(kBlnBaselineOffset),
174  false, nullptr);
175  equ_tesseract_.AdaptiveClassifier(normed_blob.get(), &ratings_equ);
176  lang_tesseract_->AdaptiveClassifier(normed_blob.get(), &ratings_lang);
177  delete tblob;
178 
179  // Get the best choice from ratings_lang and rating_equ. As the choice in the
180  // list has already been sorted by the certainty, we simply use the first
181  // choice.
182  BLOB_CHOICE *lang_choice = nullptr, *equ_choice = nullptr;
183  if (ratings_lang.length() > 0) {
184  BLOB_CHOICE_IT choice_it(&ratings_lang);
185  lang_choice = choice_it.data();
186  }
187  if (ratings_equ.length() > 0) {
188  BLOB_CHOICE_IT choice_it(&ratings_equ);
189  equ_choice = choice_it.data();
190  }
191 
192  const float lang_score = lang_choice ? lang_choice->certainty() : -FLT_MAX;
193  const float equ_score = equ_choice ? equ_choice->certainty() : -FLT_MAX;
194 
195  const float kConfScoreTh = -5.0f, kConfDiffTh = 1.8;
196  // The scores here are negative, so the max/min == fabs(min/max).
197  // float ratio = fmax(lang_score, equ_score) / fmin(lang_score, equ_score);
198  const float diff = fabs(lang_score - equ_score);
200 
201  // Classification.
202  if (fmax(lang_score, equ_score) < kConfScoreTh) {
203  // If both score are very small, then mark it as unclear.
204  type = BSTT_UNCLEAR;
205  } else if (diff > kConfDiffTh && equ_score > lang_score) {
206  // If equ_score is significantly higher, then we classify this character as
207  // math symbol.
208  type = BSTT_MATH;
209  } else if (lang_choice) {
210  // For other cases: lang_score is similar or significantly higher.
212  lang_tesseract_->unicharset, lang_choice->unichar_id());
213  }
214 
216  lang_choice->fontinfo_id()).is_italic()) {
217  // For text symbol, we still check if it is italic.
219  } else {
220  blobnbox->set_special_text_type(type);
221  }
222 }
223 
225  const UNICHARSET& unicharset, const UNICHAR_ID id) const {
226  const STRING s = unicharset.id_to_unichar(id);
227  if (unicharset.get_isalpha(id)) {
228  return BSTT_NONE;
229  }
230 
231  if (unicharset.get_ispunctuation(id)) {
232  // Exclude some special texts that are likely to be confused as math symbol.
233  static GenericVector<UNICHAR_ID> ids_to_exclude;
234  if (ids_to_exclude.empty()) {
235  static const STRING kCharsToEx[] = {"'", "`", "\"", "\\", ",", ".",
236  "〈", "〉", "《", "》", "」", "「", ""};
237  int i = 0;
238  while (kCharsToEx[i] != "") {
239  ids_to_exclude.push_back(
240  unicharset.unichar_to_id(kCharsToEx[i++].c_str()));
241  }
242  ids_to_exclude.sort();
243  }
244  return ids_to_exclude.bool_binary_search(id) ? BSTT_NONE : BSTT_MATH;
245  }
246 
247  // Check if it is digit. In addition to the isdigit attribute, we also check
248  // if this character belongs to those likely to be confused with a digit.
249  static const STRING kDigitsChars = "|";
250  if (unicharset.get_isdigit(id) ||
251  (s.length() == 1 && kDigitsChars.contains(s[0]))) {
252  return BSTT_DIGIT;
253  } else {
254  return BSTT_MATH;
255  }
256 }
257 
259  // Set configuration for Tesseract::AdaptiveClassifier.
260  equ_tesseract_.tess_cn_matching.set_value(1); // turn it on
261  equ_tesseract_.tess_bn_matching.set_value(0);
262 
263  // Set the multiplier to zero for lang_tesseract_ to improve the accuracy.
264  const int classify_class_pruner = lang_tesseract_->classify_class_pruner_multiplier;
265  const int classify_integer_matcher =
269 
271  ColPartition *part = nullptr;
272  gsearch.StartFullSearch();
273  while ((part = gsearch.NextFullSearch()) != nullptr) {
274  if (!IsTextOrEquationType(part->type())) {
275  continue;
276  }
277  IdentifyBlobsToSkip(part);
278  BLOBNBOX_C_IT bbox_it(part->boxes());
279  // Compute the height threshold.
280  GenericVector<int> blob_heights;
281  for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
282  bbox_it.forward()) {
283  if (bbox_it.data()->special_text_type() != BSTT_SKIP) {
284  blob_heights.push_back(bbox_it.data()->bounding_box().height());
285  }
286  }
287  blob_heights.sort();
288  const int height_th = blob_heights[blob_heights.size() / 2] / 3 * 2;
289  for (bbox_it.mark_cycle_pt (); !bbox_it.cycled_list();
290  bbox_it.forward()) {
291  if (bbox_it.data()->special_text_type() != BSTT_SKIP) {
292  IdentifySpecialText(bbox_it.data(), height_th);
293  }
294  }
295  }
296 
297  // Set the multiplier values back.
299  classify_class_pruner);
301  classify_integer_matcher);
302 
303  if (equationdetect_save_spt_image) { // For debug.
304  STRING outfile;
305  GetOutputTiffName("_spt", &outfile);
306  PaintSpecialTexts(outfile);
307  }
308 }
309 
311  ASSERT_HOST(part);
312  BLOBNBOX_C_IT blob_it(part->boxes());
313 
314  for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
315  // At this moment, no blob should have been joined.
316  ASSERT_HOST(!blob_it.data()->joined_to_prev());
317  }
318  for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
319  BLOBNBOX* blob = blob_it.data();
320  if (blob->joined_to_prev() || blob->special_text_type() == BSTT_SKIP) {
321  continue;
322  }
323  TBOX blob_box = blob->bounding_box();
324 
325  // Search if any blob can be merged into blob. If found, then we mark all
326  // these blobs as BSTT_SKIP.
327  BLOBNBOX_C_IT blob_it2 = blob_it;
328  bool found = false;
329  while (!blob_it2.at_last()) {
330  BLOBNBOX* nextblob = blob_it2.forward();
331  const TBOX& nextblob_box = nextblob->bounding_box();
332  if (nextblob_box.left() >= blob_box.right()) {
333  break;
334  }
335  const float kWidthR = 0.4, kHeightR = 0.3;
336  const bool xoverlap = blob_box.major_x_overlap(nextblob_box),
337  yoverlap = blob_box.y_overlap(nextblob_box);
338  const float widthR = static_cast<float>(
339  std::min(nextblob_box.width(), blob_box.width())) /
340  std::max(nextblob_box.width(), blob_box.width());
341  const float heightR = static_cast<float>(
342  std::min(nextblob_box.height(), blob_box.height())) /
343  std::max(nextblob_box.height(), blob_box.height());
344 
345  if (xoverlap && yoverlap && widthR > kWidthR && heightR > kHeightR) {
346  // Found one, set nextblob type and recompute blob_box.
347  found = true;
348  nextblob->set_special_text_type(BSTT_SKIP);
349  blob_box += nextblob_box;
350  }
351  }
352  if (found) {
354  }
355  }
356 }
357 
359  ColPartitionGrid* part_grid, ColPartitionSet** best_columns) {
360  if (!lang_tesseract_) {
361  tprintf("Warning: lang_tesseract_ is nullptr!\n");
362  return -1;
363  }
364  if (!part_grid || !best_columns) {
365  tprintf("part_grid/best_columns is nullptr!!\n");
366  return -1;
367  }
368  cp_seeds_.clear();
369  part_grid_ = part_grid;
370  best_columns_ = best_columns;
372  STRING outfile;
373  page_count_++;
374 
375  if (equationdetect_save_bi_image) {
376  GetOutputTiffName("_bi", &outfile);
377  pixWrite(outfile.c_str(), lang_tesseract_->pix_binary(), IFF_TIFF_G4);
378  }
379 
380  // Pass 0: Compute special text type for blobs.
382 
383  // Pass 1: Merge parts by overlap.
385 
386  // Pass 2: compute the math blob density and find the seed partition.
388  // We still need separate seed into block seed and inline seed partition.
390 
391  if (equationdetect_save_seed_image) {
392  GetOutputTiffName("_seed", &outfile);
393  PaintColParts(outfile);
394  }
395 
396  // Pass 3: expand block equation seeds.
397  while (!cp_seeds_.empty()) {
398  GenericVector<ColPartition*> seeds_expanded;
399  for (int i = 0; i < cp_seeds_.size(); ++i) {
400  if (ExpandSeed(cp_seeds_[i])) {
401  // If this seed is expanded, then we add it into seeds_expanded. Note
402  // this seed has been removed from part_grid_ if it is expanded.
403  seeds_expanded.push_back(cp_seeds_[i]);
404  }
405  }
406  // Add seeds_expanded back into part_grid_ and reset cp_seeds_.
407  for (int i = 0; i < seeds_expanded.size(); ++i) {
408  InsertPartAfterAbsorb(seeds_expanded[i]);
409  }
410  cp_seeds_ = seeds_expanded;
411  }
412 
413  // Pass 4: find math block satellite text partitions and merge them.
415 
416  if (equationdetect_save_merged_image) { // For debug.
417  GetOutputTiffName("_merged", &outfile);
418  PaintColParts(outfile);
419  }
420 
421  return 0;
422 }
423 
425  while (true) {
426  ColPartition* part = nullptr;
427  // partitions that have been updated.
428  GenericVector<ColPartition*> parts_updated;
430  gsearch.StartFullSearch();
431  while ((part = gsearch.NextFullSearch()) != nullptr) {
432  if (!IsTextOrEquationType(part->type())) {
433  continue;
434  }
435  GenericVector<ColPartition*> parts_to_merge;
436  SearchByOverlap(part, &parts_to_merge);
437  if (parts_to_merge.empty()) {
438  continue;
439  }
440 
441  // Merge parts_to_merge with part, and remove them from part_grid_.
442  part_grid_->RemoveBBox(part);
443  for (int i = 0; i < parts_to_merge.size(); ++i) {
444  ASSERT_HOST(parts_to_merge[i] != nullptr && parts_to_merge[i] != part);
445  part->Absorb(parts_to_merge[i], nullptr);
446  }
447  gsearch.RepositionIterator();
448 
449  parts_updated.push_back(part);
450  }
451 
452  if (parts_updated.empty()) { // Exit the loop
453  break;
454  }
455 
456  // Re-insert parts_updated into part_grid_.
457  for (int i = 0; i < parts_updated.size(); ++i) {
458  InsertPartAfterAbsorb(parts_updated[i]);
459  }
460  }
461 }
462 
464  ColPartition* seed,
465  GenericVector<ColPartition*>* parts_overlap) {
466  ASSERT_HOST(seed != nullptr && parts_overlap != nullptr);
467  if (!IsTextOrEquationType(seed->type())) {
468  return;
469  }
471  const TBOX& seed_box(seed->bounding_box());
472  const int kRadNeighborCells = 30;
473  search.StartRadSearch((seed_box.left() + seed_box.right()) / 2,
474  (seed_box.top() + seed_box.bottom()) / 2,
475  kRadNeighborCells);
476  search.SetUniqueMode(true);
477 
478  // Search iteratively.
479  ColPartition *part;
481  const float kLargeOverlapTh = 0.95;
482  const float kEquXOverlap = 0.4, kEquYOverlap = 0.5;
483  while ((part = search.NextRadSearch()) != nullptr) {
484  if (part == seed || !IsTextOrEquationType(part->type())) {
485  continue;
486  }
487  const TBOX& part_box(part->bounding_box());
488  bool merge = false;
489 
490  const float x_overlap_fraction = part_box.x_overlap_fraction(seed_box),
491  y_overlap_fraction = part_box.y_overlap_fraction(seed_box);
492 
493  // If part is large overlapped with seed, then set merge to true.
494  if (x_overlap_fraction >= kLargeOverlapTh &&
495  y_overlap_fraction >= kLargeOverlapTh) {
496  merge = true;
497  } else if (seed->type() == PT_EQUATION &&
498  IsTextOrEquationType(part->type())) {
499  if ((x_overlap_fraction > kEquXOverlap && y_overlap_fraction > 0.0) ||
500  (x_overlap_fraction > 0.0 && y_overlap_fraction > kEquYOverlap)) {
501  merge = true;
502  }
503  }
504 
505  if (merge) { // Remove the part from search and put it into parts.
506  search.RemoveBBox();
507  parts_overlap->push_back(part);
508  }
509  }
510 }
511 
513  ASSERT_HOST(part);
514 
515  // Before insert part back into part_grid_, we will need re-compute some
516  // of its attributes such as first_column_, last_column_. However, we still
517  // want to preserve its type.
518  BlobTextFlowType flow_type = part->flow();
519  PolyBlockType part_type = part->type();
520  BlobRegionType blob_type = part->blob_type();
521 
522  // Call SetPartitionType to re-compute the attributes of part.
523  const TBOX& part_box(part->bounding_box());
524  int grid_x, grid_y;
526  part_box.left(), part_box.bottom(), &grid_x, &grid_y);
528 
529  // Reset the types back.
530  part->set_type(part_type);
531  part->set_blob_type(blob_type);
532  part->set_flow(flow_type);
533  part->SetBlobTypes();
534 
535  // Insert into part_grid_.
536  part_grid_->InsertBBox(true, true, part);
537 }
538 
541  ColPartition *part = nullptr;
542  gsearch.StartFullSearch();
543 
544  GenericVector<ColPartition*> seeds1, seeds2;
545  // The left coordinates of indented text partitions.
546  GenericVector<int> indented_texts_left;
547  // The foreground density of text partitions.
548  GenericVector<float> texts_foreground_density;
549  while ((part = gsearch.NextFullSearch()) != nullptr) {
550  if (!IsTextOrEquationType(part->type())) {
551  continue;
552  }
554  const bool blobs_check = CheckSeedBlobsCount(part);
555  const int kTextBlobsTh = 20;
556 
558  blobs_check) {
559  // Passed high density threshold test, save into seeds1.
560  seeds1.push_back(part);
561  } else {
562  IndentType indent = IsIndented(part);
563  if (IsLeftIndented(indent) && blobs_check &&
565  // Passed low density threshold test and is indented, save into seeds2.
566  seeds2.push_back(part);
567  } else if (!IsRightIndented(indent) &&
568  part->boxes_count() > kTextBlobsTh) {
569  // This is likely to be a text part, save the features.
570  const TBOX&box = part->bounding_box();
571  if (IsLeftIndented(indent)) {
572  indented_texts_left.push_back(box.left());
573  }
574  texts_foreground_density.push_back(ComputeForegroundDensity(box));
575  }
576  }
577  }
578 
579  // Sort the features collected from text regions.
580  indented_texts_left.sort();
581  texts_foreground_density.sort();
582  float foreground_density_th = 0.15; // Default value.
583  if (!texts_foreground_density.empty()) {
584  // Use the median of the texts_foreground_density.
585  foreground_density_th = 0.8 * texts_foreground_density[
586  texts_foreground_density.size() / 2];
587  }
588 
589  for (int i = 0; i < seeds1.size(); ++i) {
590  const TBOX& box = seeds1[i]->bounding_box();
591  if (CheckSeedFgDensity(foreground_density_th, seeds1[i]) &&
592  !(IsLeftIndented(IsIndented(seeds1[i])) &&
593  CountAlignment(indented_texts_left, box.left()) >=
595  // Mark as PT_EQUATION type.
596  seeds1[i]->set_type(PT_EQUATION);
597  cp_seeds_.push_back(seeds1[i]);
598  } else { // Mark as PT_INLINE_EQUATION type.
599  seeds1[i]->set_type(PT_INLINE_EQUATION);
600  }
601  }
602 
603  for (int i = 0; i < seeds2.size(); ++i) {
604  if (CheckForSeed2(indented_texts_left, foreground_density_th, seeds2[i])) {
605  seeds2[i]->set_type(PT_EQUATION);
606  cp_seeds_.push_back(seeds2[i]);
607  }
608  }
609 }
610 
612  Pix *pix_bi = lang_tesseract_->pix_binary();
613  const int pix_height = pixGetHeight(pix_bi);
614  Box* box = boxCreate(tbox.left(), pix_height - tbox.top(),
615  tbox.width(), tbox.height());
616  Pix *pix_sub = pixClipRectangle(pix_bi, box, nullptr);
617  l_float32 fract;
618  pixForegroundFraction(pix_sub, &fract);
619  pixDestroy(&pix_sub);
620  boxDestroy(&box);
621 
622  return fract;
623 }
624 
625 bool EquationDetect::CheckSeedFgDensity(const float density_th,
626  ColPartition* part) {
627  ASSERT_HOST(part);
628 
629  // Split part horizontall, and check for each sub part.
630  GenericVector<TBOX> sub_boxes;
631  SplitCPHorLite(part, &sub_boxes);
632  float parts_passed = 0.0;
633  for (int i = 0; i < sub_boxes.size(); ++i) {
634  const float density = ComputeForegroundDensity(sub_boxes[i]);
635  if (density < density_th) {
636  parts_passed++;
637  }
638  }
639 
640  // If most sub parts passed, then we return true.
641  const float kSeedPartRatioTh = 0.3;
642  bool retval = (parts_passed / sub_boxes.size() >= kSeedPartRatioTh);
643 
644  return retval;
645 }
646 
648  GenericVector<ColPartition*>* parts_splitted) {
649  ASSERT_HOST(part && parts_splitted);
650  if (part->median_width() == 0 || part->boxes_count() == 0) {
651  return;
652  }
653 
654  // Make a copy of part, and reset parts_splitted.
655  ColPartition* right_part = part->CopyButDontOwnBlobs();
656  parts_splitted->delete_data_pointers();
657  parts_splitted->clear();
658 
659  const double kThreshold = part->median_width() * 3.0;
660  bool found_split = true;
661  while (found_split) {
662  found_split = false;
663  BLOBNBOX_C_IT box_it(right_part->boxes());
664  // Blobs are sorted left side first. If blobs overlap,
665  // the previous blob may have a "more right" right side.
666  // Account for this by always keeping the largest "right"
667  // so far.
668  int previous_right = INT32_MIN;
669 
670  // Look for the next split in the partition.
671  for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
672  const TBOX& box = box_it.data()->bounding_box();
673  if (previous_right != INT32_MIN &&
674  box.left() - previous_right > kThreshold) {
675  // We have a split position. Split the partition in two pieces.
676  // Insert the left piece in the grid and keep processing the right.
677  const int mid_x = (box.left() + previous_right) / 2;
678  ColPartition* left_part = right_part;
679  right_part = left_part->SplitAt(mid_x);
680 
681  parts_splitted->push_back(left_part);
682  left_part->ComputeSpecialBlobsDensity();
683  found_split = true;
684  break;
685  }
686 
687  // The right side of the previous blobs.
688  previous_right = std::max(previous_right, static_cast<int>(box.right()));
689  }
690  }
691 
692  // Add the last piece.
693  right_part->ComputeSpecialBlobsDensity();
694  parts_splitted->push_back(right_part);
695 }
696 
698  GenericVector<TBOX>* splitted_boxes) {
699  ASSERT_HOST(part && splitted_boxes);
700  splitted_boxes->clear();
701  if (part->median_width() == 0) {
702  return;
703  }
704 
705  const double kThreshold = part->median_width() * 3.0;
706 
707  // Blobs are sorted left side first. If blobs overlap,
708  // the previous blob may have a "more right" right side.
709  // Account for this by always keeping the largest "right"
710  // so far.
711  TBOX union_box;
712  int previous_right = INT32_MIN;
713  BLOBNBOX_C_IT box_it(part->boxes());
714  for (box_it.mark_cycle_pt(); !box_it.cycled_list(); box_it.forward()) {
715  const TBOX& box = box_it.data()->bounding_box();
716  if (previous_right != INT32_MIN &&
717  box.left() - previous_right > kThreshold) {
718  // We have a split position.
719  splitted_boxes->push_back(union_box);
720  previous_right = INT32_MIN;
721  }
722  if (previous_right == INT32_MIN) {
723  union_box = box;
724  } else {
725  union_box += box;
726  }
727  // The right side of the previous blobs.
728  previous_right = std::max(previous_right, static_cast<int>(box.right()));
729  }
730 
731  // Add the last piece.
732  if (previous_right != INT32_MIN) {
733  splitted_boxes->push_back(union_box);
734  }
735 }
736 
738  const GenericVector<int>& indented_texts_left,
739  const float foreground_density_th,
740  ColPartition* part) {
741  ASSERT_HOST(part);
742  const TBOX& box = part->bounding_box();
743 
744  // Check if it is aligned with any indented_texts_left.
745  if (!indented_texts_left.empty() &&
746  CountAlignment(indented_texts_left, box.left()) >=
748  return false;
749  }
750 
751  // Check the foreground density.
752  if (ComputeForegroundDensity(box) > foreground_density_th) {
753  return false;
754  }
755 
756  return true;
757 }
758 
760  const GenericVector<int>& sorted_vec, const int val) const {
761  if (sorted_vec.empty()) {
762  return 0;
763  }
764  const int kDistTh = static_cast<int>(roundf(0.03 * resolution_));
765  const int pos = sorted_vec.binary_search(val);
766  int count = 0;
767 
768  // Search left side.
769  int index = pos;
770  while (index >= 0 && abs(val - sorted_vec[index--]) < kDistTh) {
771  count++;
772  }
773 
774  // Search right side.
775  index = pos + 1;
776  while (index < sorted_vec.size() && sorted_vec[index++] - val < kDistTh) {
777  count++;
778  }
779 
780  return count;
781 }
782 
786  const int textparts_linespacing = EstimateTextPartLineSpacing();
787  IdentifyInlinePartsVertical(true, textparts_linespacing);
788  IdentifyInlinePartsVertical(false, textparts_linespacing);
789 }
790 
793  ColPartition *part = nullptr;
794  gsearch.StartFullSearch();
795  delete cps_super_bbox_;
796  cps_super_bbox_ = new TBOX();
797  while ((part = gsearch.NextFullSearch()) != nullptr) {
798  (*cps_super_bbox_) += part->bounding_box();
799  }
800 }
801 
805  const int kMarginDiffTh = IntCastRounded(
807  const int kGapTh = static_cast<int>(roundf(
810  search.SetUniqueMode(true);
811  // The center x coordinate of the cp_super_bbox_.
812  const int cps_cx = cps_super_bbox_->left() + cps_super_bbox_->width() / 2;
813  for (int i = 0; i < cp_seeds_.size(); ++i) {
814  ColPartition* part = cp_seeds_[i];
815  const TBOX& part_box(part->bounding_box());
816  const int left_margin = part_box.left() - cps_super_bbox_->left(),
817  right_margin = cps_super_bbox_->right() - part_box.right();
818  bool right_to_left;
819  if (left_margin + kMarginDiffTh < right_margin &&
820  left_margin < kMarginDiffTh) {
821  // part is left aligned, so we search if it has any right neighbor.
822  search.StartSideSearch(
823  part_box.right(), part_box.top(), part_box.bottom());
824  right_to_left = false;
825  } else if (left_margin > cps_cx) {
826  // part locates on the right half on image, so search if it has any left
827  // neighbor.
828  search.StartSideSearch(
829  part_box.left(), part_box.top(), part_box.bottom());
830  right_to_left = true;
831  } else { // part is not an inline equation.
832  new_seeds.push_back(part);
833  continue;
834  }
835  ColPartition* neighbor = nullptr;
836  bool side_neighbor_found = false;
837  while ((neighbor = search.NextSideSearch(right_to_left)) != nullptr) {
838  const TBOX& neighbor_box(neighbor->bounding_box());
839  if (!IsTextOrEquationType(neighbor->type()) ||
840  part_box.x_gap(neighbor_box) > kGapTh ||
841  !part_box.major_y_overlap(neighbor_box) ||
842  part_box.major_x_overlap(neighbor_box)) {
843  continue;
844  }
845  // We have found one. Set the side_neighbor_found flag.
846  side_neighbor_found = true;
847  break;
848  }
849  if (!side_neighbor_found) { // Mark part as PT_INLINE_EQUATION.
851  } else {
852  // Check the geometric feature of neighbor.
853  const TBOX& neighbor_box(neighbor->bounding_box());
854  if (neighbor_box.width() > part_box.width() &&
855  neighbor->type() != PT_EQUATION) { // Mark as PT_INLINE_EQUATION.
857  } else { // part is not an inline equation type.
858  new_seeds.push_back(part);
859  }
860  }
861  }
862 
863  // Reset the cp_seeds_ using the new_seeds.
864  cp_seeds_ = new_seeds;
865 }
866 
869 
870  // Get the y gap between text partitions;
871  ColPartition *current = nullptr, *prev = nullptr;
872  gsearch.StartFullSearch();
873  GenericVector<int> ygaps;
874  while ((current = gsearch.NextFullSearch()) != nullptr) {
875  if (!PTIsTextType(current->type())) {
876  continue;
877  }
878  if (prev != nullptr) {
879  const TBOX &current_box = current->bounding_box();
880  const TBOX &prev_box = prev->bounding_box();
881  // prev and current should be x major overlap and non y overlap.
882  if (current_box.major_x_overlap(prev_box) &&
883  !current_box.y_overlap(prev_box)) {
884  int gap = current_box.y_gap(prev_box);
885  if (gap < std::min(current_box.height(), prev_box.height())) {
886  // The gap should be smaller than the height of the bounding boxes.
887  ygaps.push_back(gap);
888  }
889  }
890  }
891  prev = current;
892  }
893 
894  if (ygaps.size() < 8) { // We do not have enough data.
895  return -1;
896  }
897 
898  // Compute the line spacing from ygaps: use the mean of the first half.
899  ygaps.sort();
900  int spacing = 0, count;
901  for (count = 0; count < ygaps.size() / 2; count++) {
902  spacing += ygaps[count];
903  }
904  return spacing / count;
905 }
906 
908  const bool top_to_bottom, const int textparts_linespacing) {
909  if (cp_seeds_.empty()) {
910  return;
911  }
912 
913  // Sort cp_seeds_.
914  if (top_to_bottom) { // From top to bottom.
915  cp_seeds_.sort(&SortCPByTopReverse);
916  } else { // From bottom to top.
917  cp_seeds_.sort(&SortCPByBottom);
918  }
919 
921  for (int i = 0; i < cp_seeds_.size(); ++i) {
922  ColPartition* part = cp_seeds_[i];
923  // If we sort cp_seeds_ from top to bottom, then for each cp_seeds_, we look
924  // for its top neighbors, so that if two/more inline regions are connected
925  // to each other, then we will identify the top one, and then use it to
926  // identify the bottom one.
927  if (IsInline(!top_to_bottom, textparts_linespacing, part)) {
929  } else {
930  new_seeds.push_back(part);
931  }
932  }
933  cp_seeds_ = new_seeds;
934 }
935 
936 bool EquationDetect::IsInline(const bool search_bottom,
937  const int textparts_linespacing,
938  ColPartition* part) {
939  ASSERT_HOST(part != nullptr);
940  // Look for its nearest vertical neighbor that hardly overlaps in y but
941  // largely overlaps in x.
943  ColPartition *neighbor = nullptr;
944  const TBOX& part_box(part->bounding_box());
945  const float kYGapRatioTh = 1.0;
946 
947  if (search_bottom) {
948  search.StartVerticalSearch(part_box.left(), part_box.right(),
949  part_box.bottom());
950  } else {
951  search.StartVerticalSearch(part_box.left(), part_box.right(),
952  part_box.top());
953  }
954  search.SetUniqueMode(true);
955  while ((neighbor = search.NextVerticalSearch(search_bottom)) != nullptr) {
956  const TBOX& neighbor_box(neighbor->bounding_box());
957  if (part_box.y_gap(neighbor_box) > kYGapRatioTh *
958  std::min(part_box.height(), neighbor_box.height())) {
959  // Finished searching.
960  break;
961  }
962  if (!PTIsTextType(neighbor->type())) {
963  continue;
964  }
965 
966  // Check if neighbor and part is inline similar.
967  const float kHeightRatioTh = 0.5;
968  const int kYGapTh = textparts_linespacing > 0 ?
969  textparts_linespacing + static_cast<int>(roundf(0.02 * resolution_)):
970  static_cast<int>(roundf(0.05 * resolution_)); // Default value.
971  if (part_box.x_overlap(neighbor_box) && // Location feature.
972  part_box.y_gap(neighbor_box) <= kYGapTh && // Line spacing.
973  // Geo feature.
974  static_cast<float>(std::min(part_box.height(), neighbor_box.height())) /
975  std::max(part_box.height(), neighbor_box.height()) > kHeightRatioTh) {
976  return true;
977  }
978  }
979 
980  return false;
981 }
982 
984  if (!part) {
985  return false;
986  }
987  const int kSeedMathBlobsCount = 2;
988  const int kSeedMathDigitBlobsCount = 5;
989 
990  const int blobs = part->boxes_count(),
991  math_blobs = part->SpecialBlobsCount(BSTT_MATH),
992  digit_blobs = part->SpecialBlobsCount(BSTT_DIGIT);
993  if (blobs < kSeedBlobsCountTh || math_blobs <= kSeedMathBlobsCount ||
994  math_blobs + digit_blobs <= kSeedMathDigitBlobsCount) {
995  return false;
996  }
997 
998  return true;
999 }
1000 
1002  const float math_density_high,
1003  const float math_density_low,
1004  const ColPartition* part) const {
1005  ASSERT_HOST(part);
1006  float math_digit_density = part->SpecialBlobsDensity(BSTT_MATH)
1008  float italic_density = part->SpecialBlobsDensity(BSTT_ITALIC);
1009  if (math_digit_density > math_density_high) {
1010  return true;
1011  }
1012  if (math_digit_density + italic_density > kMathItalicDensityTh &&
1013  math_digit_density > math_density_low) {
1014  return true;
1015  }
1016 
1017  return false;
1018 }
1019 
1021  ASSERT_HOST(part);
1022 
1024  ColPartition *neighbor = nullptr;
1025  const TBOX& part_box(part->bounding_box());
1026  const int kXGapTh = static_cast<int>(roundf(0.5 * resolution_));
1027  const int kRadiusTh = static_cast<int>(roundf(3.0 * resolution_));
1028  const int kYGapTh = static_cast<int>(roundf(0.5 * resolution_));
1029 
1030  // Here we use a simple approximation algorithm: from the center of part, We
1031  // perform the radius search, and check if we can find a neighboring partition
1032  // that locates on the top/bottom left of part.
1033  search.StartRadSearch((part_box.left() + part_box.right()) / 2,
1034  (part_box.top() + part_box.bottom()) / 2, kRadiusTh);
1035  search.SetUniqueMode(true);
1036  bool left_indented = false, right_indented = false;
1037  while ((neighbor = search.NextRadSearch()) != nullptr &&
1038  (!left_indented || !right_indented)) {
1039  if (neighbor == part) {
1040  continue;
1041  }
1042  const TBOX& neighbor_box(neighbor->bounding_box());
1043 
1044  if (part_box.major_y_overlap(neighbor_box) &&
1045  part_box.x_gap(neighbor_box) < kXGapTh) {
1046  // When this happens, it is likely part is a fragment of an
1047  // over-segmented colpartition. So we return false.
1048  return NO_INDENT;
1049  }
1050 
1051  if (!IsTextOrEquationType(neighbor->type())) {
1052  continue;
1053  }
1054 
1055  // The neighbor should be above/below part, and overlap in x direction.
1056  if (!part_box.x_overlap(neighbor_box) || part_box.y_overlap(neighbor_box)) {
1057  continue;
1058  }
1059 
1060  if (part_box.y_gap(neighbor_box) < kYGapTh) {
1061  const int left_gap = part_box.left() - neighbor_box.left();
1062  const int right_gap = neighbor_box.right() - part_box.right();
1063  if (left_gap > kXGapTh) {
1064  left_indented = true;
1065  }
1066  if (right_gap > kXGapTh) {
1067  right_indented = true;
1068  }
1069  }
1070  }
1071 
1072  if (left_indented && right_indented) {
1073  return BOTH_INDENT;
1074  }
1075  if (left_indented) {
1076  return LEFT_INDENT;
1077  }
1078  if (right_indented) {
1079  return RIGHT_INDENT;
1080  }
1081  return NO_INDENT;
1082 }
1083 
1085  if (seed == nullptr || // This seed has been absorbed by other seeds.
1086  seed->IsVerticalType()) { // We skip vertical type right now.
1087  return false;
1088  }
1089 
1090  // Expand in four directions.
1091  GenericVector<ColPartition*> parts_to_merge;
1092  ExpandSeedHorizontal(true, seed, &parts_to_merge);
1093  ExpandSeedHorizontal(false, seed, &parts_to_merge);
1094  ExpandSeedVertical(true, seed, &parts_to_merge);
1095  ExpandSeedVertical(false, seed, &parts_to_merge);
1096  SearchByOverlap(seed, &parts_to_merge);
1097 
1098  if (parts_to_merge.empty()) { // We don't find any partition to merge.
1099  return false;
1100  }
1101 
1102  // Merge all partitions in parts_to_merge with seed. We first remove seed
1103  // from part_grid_ as its bounding box is going to expand. Then we add it
1104  // back after it absorbs all parts_to_merge partitions.
1105  part_grid_->RemoveBBox(seed);
1106  for (int i = 0; i < parts_to_merge.size(); ++i) {
1107  ColPartition* part = parts_to_merge[i];
1108  if (part->type() == PT_EQUATION) {
1109  // If part is in cp_seeds_, then we mark it as nullptr so that we won't
1110  // process it again.
1111  for (int j = 0; j < cp_seeds_.size(); ++j) {
1112  if (part == cp_seeds_[j]) {
1113  cp_seeds_[j] = nullptr;
1114  break;
1115  }
1116  }
1117  }
1118 
1119  // part has already been removed from part_grid_ in function
1120  // ExpandSeedHorizontal/ExpandSeedVertical.
1121  seed->Absorb(part, nullptr);
1122  }
1123 
1124  return true;
1125 }
1126 
1128  const bool search_left,
1129  ColPartition* seed,
1130  GenericVector<ColPartition*>* parts_to_merge) {
1131  ASSERT_HOST(seed != nullptr && parts_to_merge != nullptr);
1132  const float kYOverlapTh = 0.6;
1133  const int kXGapTh = static_cast<int>(roundf(0.2 * resolution_));
1134 
1136  const TBOX& seed_box(seed->bounding_box());
1137  const int x = search_left ? seed_box.left() : seed_box.right();
1138  search.StartSideSearch(x, seed_box.bottom(), seed_box.top());
1139  search.SetUniqueMode(true);
1140 
1141  // Search iteratively.
1142  ColPartition *part = nullptr;
1143  while ((part = search.NextSideSearch(search_left)) != nullptr) {
1144  if (part == seed) {
1145  continue;
1146  }
1147  const TBOX& part_box(part->bounding_box());
1148  if (part_box.x_gap(seed_box) > kXGapTh) { // Out of scope.
1149  break;
1150  }
1151 
1152  // Check part location.
1153  if ((part_box.left() >= seed_box.left() && search_left) ||
1154  (part_box.right() <= seed_box.right() && !search_left)) {
1155  continue;
1156  }
1157 
1158  if (part->type() != PT_EQUATION) { // Non-equation type.
1159  // Skip PT_LINLINE_EQUATION and non text type.
1160  if (part->type() == PT_INLINE_EQUATION ||
1161  (!IsTextOrEquationType(part->type()) &&
1162  part->blob_type() != BRT_HLINE)) {
1163  continue;
1164  }
1165  // For other types, it should be the near small neighbor of seed.
1166  if (!IsNearSmallNeighbor(seed_box, part_box) ||
1167  !CheckSeedNeighborDensity(part)) {
1168  continue;
1169  }
1170  } else { // Equation type, check the y overlap.
1171  if (part_box.y_overlap_fraction(seed_box) < kYOverlapTh &&
1172  seed_box.y_overlap_fraction(part_box) < kYOverlapTh) {
1173  continue;
1174  }
1175  }
1176 
1177  // Passed the check, delete it from search and add into parts_to_merge.
1178  search.RemoveBBox();
1179  parts_to_merge->push_back(part);
1180  }
1181 }
1182 
1184  const bool search_bottom,
1185  ColPartition* seed,
1186  GenericVector<ColPartition*>* parts_to_merge) {
1187  ASSERT_HOST(seed != nullptr && parts_to_merge != nullptr &&
1188  cps_super_bbox_ != nullptr);
1189  const float kXOverlapTh = 0.4;
1190  const int kYGapTh = static_cast<int>(roundf(0.2 * resolution_));
1191 
1193  const TBOX& seed_box(seed->bounding_box());
1194  const int y = search_bottom ? seed_box.bottom() : seed_box.top();
1195  search.StartVerticalSearch(
1197  search.SetUniqueMode(true);
1198 
1199  // Search iteratively.
1200  ColPartition *part = nullptr;
1202  int skipped_min_top = std::numeric_limits<int>::max(), skipped_max_bottom = -1;
1203  while ((part = search.NextVerticalSearch(search_bottom)) != nullptr) {
1204  if (part == seed) {
1205  continue;
1206  }
1207  const TBOX& part_box(part->bounding_box());
1208 
1209  if (part_box.y_gap(seed_box) > kYGapTh) { // Out of scope.
1210  break;
1211  }
1212 
1213  // Check part location.
1214  if ((part_box.bottom() >= seed_box.bottom() && search_bottom) ||
1215  (part_box.top() <= seed_box.top() && !search_bottom)) {
1216  continue;
1217  }
1218 
1219  bool skip_part = false;
1220  if (part->type() != PT_EQUATION) { // Non-equation type.
1221  // Skip PT_LINLINE_EQUATION and non text type.
1222  if (part->type() == PT_INLINE_EQUATION ||
1223  (!IsTextOrEquationType(part->type()) &&
1224  part->blob_type() != BRT_HLINE)) {
1225  skip_part = true;
1226  } else if (!IsNearSmallNeighbor(seed_box, part_box) ||
1227  !CheckSeedNeighborDensity(part)) {
1228  // For other types, it should be the near small neighbor of seed.
1229  skip_part = true;
1230  }
1231  } else { // Equation type, check the x overlap.
1232  if (part_box.x_overlap_fraction(seed_box) < kXOverlapTh &&
1233  seed_box.x_overlap_fraction(part_box) < kXOverlapTh) {
1234  skip_part = true;
1235  }
1236  }
1237  if (skip_part) {
1238  if (part->type() != PT_EQUATION) {
1239  if (skipped_min_top > part_box.top()) {
1240  skipped_min_top = part_box.top();
1241  }
1242  if (skipped_max_bottom < part_box.bottom()) {
1243  skipped_max_bottom = part_box.bottom();
1244  }
1245  }
1246  } else {
1247  parts.push_back(part);
1248  }
1249  }
1250 
1251  // For every part in parts, we need verify it is not above skipped_min_top
1252  // when search top, or not below skipped_max_bottom when search bottom. I.e.,
1253  // we will skip a part if it looks like:
1254  // search bottom | search top
1255  // seed: ****************** | part: **********
1256  // skipped: xxx | skipped: xxx
1257  // part: ********** | seed: ***********
1258  for (int i = 0; i < parts.size(); i++) {
1259  const TBOX& part_box(parts[i]->bounding_box());
1260  if ((search_bottom && part_box.top() <= skipped_max_bottom) ||
1261  (!search_bottom && part_box.bottom() >= skipped_min_top)) {
1262  continue;
1263  }
1264  // Add parts[i] into parts_to_merge, and delete it from part_grid_.
1265  parts_to_merge->push_back(parts[i]);
1266  part_grid_->RemoveBBox(parts[i]);
1267  }
1268 }
1269 
1271  const TBOX& part_box) const {
1272  const int kXGapTh = static_cast<int>(roundf(0.25 * resolution_));
1273  const int kYGapTh = static_cast<int>(roundf(0.05 * resolution_));
1274 
1275  // Check geometric feature.
1276  if (part_box.height() > seed_box.height() ||
1277  part_box.width() > seed_box.width()) {
1278  return false;
1279  }
1280 
1281  // Check overlap and distance.
1282  if ((!part_box.major_x_overlap(seed_box) ||
1283  part_box.y_gap(seed_box) > kYGapTh) &&
1284  (!part_box.major_y_overlap(seed_box) ||
1285  part_box.x_gap(seed_box) > kXGapTh)) {
1286  return false;
1287  }
1288 
1289  return true;
1290 }
1291 
1293  ASSERT_HOST(part);
1294  if (part->boxes_count() < kSeedBlobsCountTh) {
1295  // Too few blobs, skip the check.
1296  return true;
1297  }
1298 
1299  // We check the math blobs density and the unclear blobs density.
1300  if (part->SpecialBlobsDensity(BSTT_MATH) +
1303  return true;
1304  }
1305 
1306  return false;
1307 }
1308 
1310  // Iterate over part_grid_, and find all parts that are text type but not
1311  // equation type.
1312  ColPartition *part = nullptr;
1313  GenericVector<ColPartition*> text_parts;
1315  gsearch.StartFullSearch();
1316  while ((part = gsearch.NextFullSearch()) != nullptr) {
1317  if (part->type() == PT_FLOWING_TEXT || part->type() == PT_HEADING_TEXT) {
1318  text_parts.push_back(part);
1319  }
1320  }
1321  if (text_parts.empty()) {
1322  return;
1323  }
1324 
1325  // Compute the medium height of the text_parts.
1326  text_parts.sort(&SortCPByHeight);
1327  const TBOX& text_box = text_parts[text_parts.size() / 2]->bounding_box();
1328  int med_height = text_box.height();
1329  if (text_parts.size() % 2 == 0 && text_parts.size() > 1) {
1330  const TBOX& text_box =
1331  text_parts[text_parts.size() / 2 - 1]->bounding_box();
1332  med_height = static_cast<int>(roundf(
1333  0.5 * (text_box.height() + med_height)));
1334  }
1335 
1336  // Iterate every text_parts and check if it is a math block satellite.
1337  for (int i = 0; i < text_parts.size(); ++i) {
1338  const TBOX& text_box(text_parts[i]->bounding_box());
1339  if (text_box.height() > med_height) {
1340  continue;
1341  }
1342  GenericVector<ColPartition*> math_blocks;
1343  if (!IsMathBlockSatellite(text_parts[i], &math_blocks)) {
1344  continue;
1345  }
1346 
1347  // Found. merge text_parts[i] with math_blocks.
1348  part_grid_->RemoveBBox(text_parts[i]);
1349  text_parts[i]->set_type(PT_EQUATION);
1350  for (int j = 0; j < math_blocks.size(); ++j) {
1351  part_grid_->RemoveBBox(math_blocks[j]);
1352  text_parts[i]->Absorb(math_blocks[j], nullptr);
1353  }
1354  InsertPartAfterAbsorb(text_parts[i]);
1355  }
1356 }
1357 
1359  ColPartition* part, GenericVector<ColPartition*>* math_blocks) {
1360  ASSERT_HOST(part != nullptr && math_blocks != nullptr);
1361  math_blocks->clear();
1362  const TBOX& part_box(part->bounding_box());
1363  // Find the top/bottom nearest neighbor of part.
1364  ColPartition *neighbors[2];
1365  int y_gaps[2] = {std::numeric_limits<int>::max(), std::numeric_limits<int>::max()};
1366  // The horizontal boundary of the neighbors.
1367  int neighbors_left = std::numeric_limits<int>::max(), neighbors_right = 0;
1368  for (int i = 0; i < 2; ++i) {
1369  neighbors[i] = SearchNNVertical(i != 0, part);
1370  if (neighbors[i]) {
1371  const TBOX& neighbor_box = neighbors[i]->bounding_box();
1372  y_gaps[i] = neighbor_box.y_gap(part_box);
1373  if (neighbor_box.left() < neighbors_left) {
1374  neighbors_left = neighbor_box.left();
1375  }
1376  if (neighbor_box.right() > neighbors_right) {
1377  neighbors_right = neighbor_box.right();
1378  }
1379  }
1380  }
1381  if (neighbors[0] == neighbors[1]) {
1382  // This happens when part is inside neighbor.
1383  neighbors[1] = nullptr;
1384  y_gaps[1] = std::numeric_limits<int>::max();
1385  }
1386 
1387  // Check if part is within [neighbors_left, neighbors_right].
1388  if (part_box.left() < neighbors_left || part_box.right() > neighbors_right) {
1389  return false;
1390  }
1391 
1392  // Get the index of the near one in neighbors.
1393  int index = y_gaps[0] < y_gaps[1] ? 0 : 1;
1394 
1395  // Check the near one.
1396  if (IsNearMathNeighbor(y_gaps[index], neighbors[index])) {
1397  math_blocks->push_back(neighbors[index]);
1398  } else {
1399  // If the near one failed the check, then we skip checking the far one.
1400  return false;
1401  }
1402 
1403  // Check the far one.
1404  index = 1 - index;
1405  if (IsNearMathNeighbor(y_gaps[index], neighbors[index])) {
1406  math_blocks->push_back(neighbors[index]);
1407  }
1408 
1409  return true;
1410 }
1411 
1413  const bool search_bottom, const ColPartition* part) {
1414  ASSERT_HOST(part);
1415  ColPartition *nearest_neighbor = nullptr, *neighbor = nullptr;
1416  const int kYGapTh = static_cast<int>(roundf(resolution_ * 0.5));
1417 
1419  search.SetUniqueMode(true);
1420  const TBOX& part_box(part->bounding_box());
1421  int y = search_bottom ? part_box.bottom() : part_box.top();
1422  search.StartVerticalSearch(part_box.left(), part_box.right(), y);
1423  int min_y_gap = std::numeric_limits<int>::max();
1424  while ((neighbor = search.NextVerticalSearch(search_bottom)) != nullptr) {
1425  if (neighbor == part || !IsTextOrEquationType(neighbor->type())) {
1426  continue;
1427  }
1428  const TBOX& neighbor_box(neighbor->bounding_box());
1429  int y_gap = neighbor_box.y_gap(part_box);
1430  if (y_gap > kYGapTh) { // Out of scope.
1431  break;
1432  }
1433  if (!neighbor_box.major_x_overlap(part_box) ||
1434  (search_bottom && neighbor_box.bottom() > part_box.bottom()) ||
1435  (!search_bottom && neighbor_box.top() < part_box.top())) {
1436  continue;
1437  }
1438  if (y_gap < min_y_gap) {
1439  min_y_gap = y_gap;
1440  nearest_neighbor = neighbor;
1441  }
1442  }
1443 
1444  return nearest_neighbor;
1445 }
1446 
1448  const int y_gap, const ColPartition *neighbor) const {
1449  if (!neighbor) {
1450  return false;
1451  }
1452  const int kYGapTh = static_cast<int>(roundf(resolution_ * 0.1));
1453  return neighbor->type() == PT_EQUATION && y_gap <= kYGapTh;
1454 }
1455 
1457  STRING* image_name) const {
1458  ASSERT_HOST(image_name && name);
1459  char page[50];
1460  snprintf(page, sizeof(page), "%04d", page_count_);
1461  *image_name = STRING(lang_tesseract_->imagebasename) + page + name + ".tif";
1462 }
1463 
1464 void EquationDetect::PaintSpecialTexts(const STRING& outfile) const {
1465  Pix *pix = nullptr, *pixBi = lang_tesseract_->pix_binary();
1466  pix = pixConvertTo32(pixBi);
1468  ColPartition* part = nullptr;
1469  gsearch.StartFullSearch();
1470  while ((part = gsearch.NextFullSearch()) != nullptr) {
1471  BLOBNBOX_C_IT blob_it(part->boxes());
1472  for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
1473  RenderSpecialText(pix, blob_it.data());
1474  }
1475  }
1476 
1477  pixWrite(outfile.c_str(), pix, IFF_TIFF_LZW);
1478  pixDestroy(&pix);
1479 }
1480 
1481 void EquationDetect::PaintColParts(const STRING& outfile) const {
1482  Pix *pix = pixConvertTo32(lang_tesseract_->BestPix());
1484  gsearch.StartFullSearch();
1485  ColPartition* part = nullptr;
1486  while ((part = gsearch.NextFullSearch()) != nullptr) {
1487  const TBOX& tbox = part->bounding_box();
1488  Box *box = boxCreate(tbox.left(), pixGetHeight(pix) - tbox.top(),
1489  tbox.width(), tbox.height());
1490  if (part->type() == PT_EQUATION) {
1491  pixRenderBoxArb(pix, box, 5, 255, 0, 0);
1492  } else if (part->type() == PT_INLINE_EQUATION) {
1493  pixRenderBoxArb(pix, box, 5, 0, 255, 0);
1494  } else {
1495  pixRenderBoxArb(pix, box, 5, 0, 0, 255);
1496  }
1497  boxDestroy(&box);
1498  }
1499 
1500  pixWrite(outfile.c_str(), pix, IFF_TIFF_LZW);
1501  pixDestroy(&pix);
1502 }
1503 
1505  ASSERT_HOST(part);
1506  TBOX box(part->bounding_box());
1507  int h = pixGetHeight(lang_tesseract_->BestPix());
1508  tprintf("Printing special blobs density values for ColParition (t=%d,b=%d) ",
1509  h - box.top(), h - box.bottom());
1510  box.print();
1511  tprintf("blobs count = %d, density = ", part->boxes_count());
1512  for (int i = 0; i < BSTT_COUNT; ++i) {
1513  auto type = static_cast<BlobSpecialTextType>(i);
1514  tprintf("%d:%f ", i, part->SpecialBlobsDensity(type));
1515  }
1516  tprintf("\n");
1517 }
1518 
1519 } // namespace tesseract
TBOX
Definition: cleanapi_test.cc:19
GenericVector::delete_data_pointers
void delete_data_pointers()
Definition: genericvector.h:872
BlobTextFlowType
BlobTextFlowType
Definition: blobbox.h:113
tesseract::EquationDetect::ExpandSeedHorizontal
void ExpandSeedHorizontal(const bool search_left, ColPartition *seed, GenericVector< ColPartition * > *parts_to_merge)
Definition: equationdetect.cpp:1127
tesseract::EquationDetect::EstimateTextPartLineSpacing
int EstimateTextPartLineSpacing()
Definition: equationdetect.cpp:867
tesseract::Tesseract::init_tesseract
int init_tesseract(const char *arg0, const char *textbase, const char *language, OcrEngineMode oem, char **configs, int configs_size, const GenericVector< STRING > *vars_vec, const GenericVector< STRING > *vars_values, bool set_only_init_params, TessdataManager *mgr)
Definition: tessedit.cpp:302
tesseract::EquationDetect::IsInline
bool IsInline(const bool search_bottom, const int textPartsLineSpacing, ColPartition *part)
Definition: equationdetect.cpp:936
tesseract::EquationDetect::GetOutputTiffName
void GetOutputTiffName(const char *name, STRING *image_name) const
Definition: equationdetect.cpp:1456
tesseract::GridSearch::RepositionIterator
void RepositionIterator()
Definition: bbgrid.h:892
kBlnXHeight
const int kBlnXHeight
Definition: normalis.h:23
tesseract::BBGrid::InsertBBox
void InsertBBox(bool h_spread, bool v_spread, BBC *bbox)
Definition: bbgrid.h:486
tesseract::kSeedBlobsCountTh
const int kSeedBlobsCountTh
Definition: equationdetect.cpp:84
UNICHARSET::get_isdigit
bool get_isdigit(UNICHAR_ID unichar_id) const
Definition: unicharset.h:502
UNICHARSET::get_isalpha
bool get_isalpha(UNICHAR_ID unichar_id) const
Definition: unicharset.h:481
tesseractclass.h
ASSERT_HOST
#define ASSERT_HOST(x)
Definition: errcode.h:87
tesseract::ColPartition::median_width
int median_width() const
Definition: colpartition.h:142
tesseract::ColPartition::flow
BlobTextFlowType flow() const
Definition: colpartition.h:154
tesseract::EquationDetect::IdentifySeedParts
void IdentifySeedParts()
Definition: equationdetect.cpp:539
tesseract::IsRightIndented
bool IsRightIndented(const EquationDetect::IndentType type)
Definition: equationdetect.cpp:97
bbgrid.h
tesseract::kMathDigitDensityTh1
const float kMathDigitDensityTh1
Definition: equationdetect.cpp:80
tesseract::EquationDetect::IdentifyInlineParts
void IdentifyInlineParts()
Definition: equationdetect.cpp:783
tesseract::kUnclearDensityTh
const float kUnclearDensityTh
Definition: equationdetect.cpp:83
BLOB_CHOICE::certainty
float certainty() const
Definition: ratngs.h:81
tesseract::EquationDetect::CheckForSeed2
bool CheckForSeed2(const GenericVector< int > &indented_texts_left, const float foreground_density_th, ColPartition *part)
Definition: equationdetect.cpp:737
tesseract::Tesseract
Definition: tesseractclass.h:172
tesseract::IsLeftIndented
bool IsLeftIndented(const EquationDetect::IndentType type)
Definition: equationdetect.cpp:92
BlobSpecialTextType
BlobSpecialTextType
Definition: blobbox.h:95
tesseract::BBGrid::RemoveBBox
void RemoveBBox(BBC *bbox)
Definition: bbgrid.h:533
tesseract::EquationDetect::IsNearMathNeighbor
bool IsNearMathNeighbor(const int y_gap, const ColPartition *neighbor) const
Definition: equationdetect.cpp:1447
tesseract::ColPartition::SpecialBlobsDensity
float SpecialBlobsDensity(const BlobSpecialTextType type) const
Definition: colpartition.cpp:556
tesseract::GridSearch::StartFullSearch
void StartFullSearch()
Definition: bbgrid.h:665
tesseract::EquationDetect::resolution_
int resolution_
Definition: equationdetect.h:265
tesseract::EquationDetect::IdentifyInlinePartsVertical
void IdentifyInlinePartsVertical(const bool top_to_bottom, const int textPartsLineSpacing)
Definition: equationdetect.cpp:907
tesseract::EquationDetect::LEFT_INDENT
Definition: equationdetect.h:46
TBOX::top
int16_t top() const
Definition: rect.h:57
tesseract::ColPartition::type
PolyBlockType type() const
Definition: colpartition.h:181
tesseract::EquationDetect::SetLangTesseract
void SetLangTesseract(Tesseract *lang_tesseract)
Definition: equationdetect.cpp:123
STRING
Definition: strngs.h:45
tesseract::EquationDetect::ExpandSeedVertical
void ExpandSeedVertical(const bool search_bottom, ColPartition *seed, GenericVector< ColPartition * > *parts_to_merge)
Definition: equationdetect.cpp:1183
TO_BLOCK::blobs
BLOBNBOX_LIST blobs
Definition: blobbox.h:771
BLOBNBOX::set_special_text_type
void set_special_text_type(BlobSpecialTextType new_type)
Definition: blobbox.h:291
TO_BLOCK
Definition: blobbox.h:691
tesseract::EquationDetect::SplitCPHor
void SplitCPHor(ColPartition *part, GenericVector< ColPartition * > *parts_splitted)
Definition: equationdetect.cpp:647
tesseract::EquationDetectBase::RenderSpecialText
static void RenderSpecialText(Pix *pix, BLOBNBOX *blob)
Definition: equationdetectbase.cpp:31
colpartitionset.h
PT_INLINE_EQUATION
Definition: capi.h:113
colpartition.h
tesseract::ColPartitionSet
Definition: colpartitionset.h:39
TBOX::major_y_overlap
bool major_y_overlap(const TBOX &box) const
Definition: rect.h:428
IntCastRounded
int IntCastRounded(double x)
Definition: helpers.h:173
tesseract::Classify::classify_class_pruner_multiplier
int classify_class_pruner_multiplier
Definition: classify.h:501
tesseract::IsTextOrEquationType
bool IsTextOrEquationType(PolyBlockType type)
Definition: equationdetect.cpp:88
BSTT_SKIP
Definition: blobbox.h:101
tesseract::ColPartition::boxes
BLOBNBOX_CLIST * boxes()
Definition: colpartition.h:187
tesseract::EquationDetect::page_count_
int page_count_
Definition: equationdetect.h:268
BLOB_CHOICE::unichar_id
UNICHAR_ID unichar_id() const
Definition: ratngs.h:75
BSTT_MATH
Definition: blobbox.h:99
BLOBNBOX
Definition: blobbox.h:142
BRT_HLINE
Definition: blobbox.h:73
C_BLOB
Definition: stepblob.h:36
tesseract::CCUtil::unicharset
UNICHARSET unicharset
Definition: ccutil.h:57
tesseract::ColPartition
Definition: colpartition.h:67
BSTT_DIGIT
Definition: blobbox.h:98
TBOX::height
int16_t height() const
Definition: rect.h:107
UNICHARSET::get_ispunctuation
bool get_ispunctuation(UNICHAR_ID unichar_id) const
Definition: unicharset.h:509
ratngs.h
TBOX::y_overlap
bool y_overlap(const TBOX &box) const
Definition: rect.h:418
TBOX::y_gap
int y_gap(const TBOX &box) const
Definition: rect.h:232
tesseract::Tesseract::BestPix
Pix * BestPix() const
Definition: tesseractclass.h:231
TBOX::x_overlap_fraction
double x_overlap_fraction(const TBOX &box) const
Definition: rect.h:445
tesseract::ColPartition::SplitAt
ColPartition * SplitAt(int split_x)
Definition: colpartition.cpp:823
tesseract::ColPartition::boxes_count
int boxes_count() const
Definition: colpartition.h:190
tesseract::Classify::get_fontinfo_table
UnicityTable< FontInfo > & get_fontinfo_table()
Definition: classify.h:386
BSTT_UNCLEAR
Definition: blobbox.h:100
BLOBNBOX::special_text_type
BlobSpecialTextType special_text_type() const
Definition: blobbox.h:288
tesseract::ColPartition::set_blob_type
void set_blob_type(BlobRegionType t)
Definition: colpartition.h:151
tesseract::EquationDetect::EquationDetect
EquationDetect(const char *equ_datapath, const char *equ_language)
Definition: equationdetect.cpp:102
GenericVector::bool_binary_search
bool bool_binary_search(const T &target) const
Definition: genericvector.h:239
GenericVector::push_back
int push_back(T object)
Definition: genericvector.h:799
tesseract::EquationDetect::IdentifyInlinePartsHorizontal
void IdentifyInlinePartsHorizontal()
Definition: equationdetect.cpp:802
tesseract::EquationDetect::NO_INDENT
Definition: equationdetect.h:45
PT_EQUATION
Definition: capi.h:112
TO_BLOCK::large_blobs
BLOBNBOX_LIST large_blobs
Definition: blobbox.h:775
TBOX::major_x_overlap
bool major_x_overlap(const TBOX &box) const
Definition: rect.h:403
STRING::c_str
const char * c_str() const
Definition: strngs.cpp:192
BlobRegionType
BlobRegionType
Definition: blobbox.h:71
tesseract::EquationDetect::EstimateTypeForUnichar
BlobSpecialTextType EstimateTypeForUnichar(const UNICHARSET &unicharset, const UNICHAR_ID id) const
Definition: equationdetect.cpp:224
PT_HEADING_TEXT
Definition: capi.h:110
tesseract::EquationDetect::IsNearSmallNeighbor
bool IsNearSmallNeighbor(const TBOX &seed_box, const TBOX &part_box) const
Definition: equationdetect.cpp:1270
equationdetect.h
UNICHARSET::unichar_to_id
UNICHAR_ID unichar_to_id(const char *const unichar_repr) const
Definition: unicharset.cpp:209
tesseract::EquationDetect::SplitCPHorLite
void SplitCPHorLite(ColPartition *part, GenericVector< TBOX > *splitted_boxes)
Definition: equationdetect.cpp:697
tesseract::EquationDetect::CheckSeedFgDensity
bool CheckSeedFgDensity(const float density_th, ColPartition *part)
Definition: equationdetect.cpp:625
tesseract::Classify::AdaptiveClassifier
void AdaptiveClassifier(TBLOB *Blob, BLOB_CHOICE_LIST *Choices)
Definition: adaptmatch.cpp:191
BLOBNBOX::joined_to_prev
bool joined_to_prev() const
Definition: blobbox.h:255
tesseract::EquationDetect::ExpandSeed
bool ExpandSeed(ColPartition *seed)
Definition: equationdetect.cpp:1084
tesseract::EquationDetect::IdentifySpecialText
void IdentifySpecialText()
Definition: equationdetect.cpp:258
tesseract::ColPartition::blob_type
BlobRegionType blob_type() const
Definition: colpartition.h:148
tesseract::EquationDetect::CountAlignment
int CountAlignment(const GenericVector< int > &sorted_vec, const int val) const
Definition: equationdetect.cpp:759
GenericVector::empty
bool empty() const
Definition: genericvector.h:86
TBOX::width
int16_t width() const
Definition: rect.h:114
UNICHARSET
Definition: unicharset.h:145
tesseract::EquationDetect::best_columns_
ColPartitionSet ** best_columns_
Definition: equationdetect.h:256
tesseract::kMathDigitDensityTh2
const float kMathDigitDensityTh2
Definition: equationdetect.cpp:81
tesseract::kMathItalicDensityTh
const float kMathItalicDensityTh
Definition: equationdetect.cpp:82
BOOL_VAR
#define BOOL_VAR(name, val, comment)
Definition: params.h:303
TBOX::bottom
int16_t bottom() const
Definition: rect.h:64
TBLOB::PolygonalCopy
static TBLOB * PolygonalCopy(bool allow_detailed_fx, C_BLOB *src)
Definition: blobs.cpp:326
tesseract::Classify::tess_cn_matching
bool tess_cn_matching
Definition: classify.h:443
tesseract::EquationDetect::FindEquationParts
int FindEquationParts(ColPartitionGrid *part_grid, ColPartitionSet **best_columns) override
Definition: equationdetect.cpp:358
tesseract::EquationDetect::IsIndented
IndentType IsIndented(ColPartition *part)
Definition: equationdetect.cpp:1020
tesseract::Tesseract::source_resolution
int source_resolution() const
Definition: tesseractclass.h:244
tesseract::EquationDetect::MergePartsByLocation
void MergePartsByLocation()
Definition: equationdetect.cpp:424
TBLOB::Normalize
void Normalize(const BLOCK *block, const FCOORD *rotation, const DENORM *predecessor, float x_origin, float y_origin, float x_scale, float y_scale, float final_xshift, float final_yshift, bool inverse, Pix *pix)
Definition: blobs.cpp:396
tesseract::kLeftIndentAlignmentCountTh
const int kLeftIndentAlignmentCountTh
Definition: equationdetect.cpp:85
tesseract::EquationDetect::SearchByOverlap
void SearchByOverlap(ColPartition *seed, GenericVector< ColPartition * > *parts_overlap)
Definition: equationdetect.cpp:463
tesseract::EquationDetect::cps_super_bbox_
TBOX * cps_super_bbox_
Definition: equationdetect.h:259
tesseract::EquationDetect::RIGHT_INDENT
Definition: equationdetect.h:47
tesseract::GridSearch
Definition: bbgrid.h:48
helpers.h
tesseract
Definition: baseapi.h:65
tesseract::EquationDetect::ComputeForegroundDensity
float ComputeForegroundDensity(const TBOX &tbox)
Definition: equationdetect.cpp:611
tesseract::EquationDetect::lang_tesseract_
Tesseract * lang_tesseract_
Definition: equationdetect.h:247
tesseract::EquationDetect::CheckSeedBlobsCount
bool CheckSeedBlobsCount(ColPartition *part)
Definition: equationdetect.cpp:983
tesseract::EquationDetect::IndentType
IndentType
Definition: equationdetect.h:44
tesseract::EquationDetect::PaintColParts
void PaintColParts(const STRING &outfile) const
Definition: equationdetect.cpp:1481
tesseract::EquationDetect::PaintSpecialTexts
void PaintSpecialTexts(const STRING &outfile) const
Definition: equationdetect.cpp:1464
BLOBNBOX::bounding_box
const TBOX & bounding_box() const
Definition: blobbox.h:229
tesseract::ColPartition::set_flow
void set_flow(BlobTextFlowType f)
Definition: colpartition.h:157
UNICHAR_ID
int UNICHAR_ID
Definition: unichar.h:36
tesseract::EquationDetect::PrintSpecialBlobsDensity
void PrintSpecialBlobsDensity(const ColPartition *part) const
Definition: equationdetect.cpp:1504
TBLOB::bounding_box
TBOX bounding_box() const
Definition: blobs.cpp:466
tesseract::EquationDetect::ProcessMathBlockSatelliteParts
void ProcessMathBlockSatelliteParts()
Definition: equationdetect.cpp:1309
GenericVector
Definition: baseapi.h:40
tesseract::EquationDetect::ComputeCPsSuperBBox
void ComputeCPsSuperBBox()
Definition: equationdetect.cpp:791
tesseract::ColPartition::SpecialBlobsCount
int SpecialBlobsCount(const BlobSpecialTextType type)
Definition: colpartition.cpp:561
tesseract::EquationDetect::LabelSpecialText
int LabelSpecialText(TO_BLOCK *to_block) override
Definition: equationdetect.cpp:131
tesseract::EquationDetect::part_grid_
ColPartitionGrid * part_grid_
Definition: equationdetect.h:251
BLOB_CHOICE::fontinfo_id
int16_t fontinfo_id() const
Definition: ratngs.h:84
tesseract::ColPartition::SetBlobTypes
void SetBlobTypes()
Definition: colpartition.cpp:1265
tesseract::EquationDetect::equ_tesseract_
Tesseract equ_tesseract_
Definition: equationdetect.h:243
tesseract::ColPartition::set_type
void set_type(PolyBlockType t)
Definition: colpartition.h:184
STRING::length
int32_t length() const
Definition: strngs.cpp:187
tesseract::ColPartition::bounding_box
const TBOX & bounding_box() const
Definition: colpartition.h:109
tesseract::ColPartition::ComputeSpecialBlobsDensity
void ComputeSpecialBlobsDensity()
Definition: colpartition.cpp:582
STRING::contains
bool contains(char c) const
Definition: strngs.cpp:183
count
int count(LIST var_list)
Definition: oldlist.cpp:79
BLOB_CHOICE
Definition: ratngs.h:49
TBLOB
Definition: blobs.h:282
tesseract::Classify::tess_bn_matching
bool tess_bn_matching
Definition: classify.h:444
tesseract::EquationDetect::BOTH_INDENT
Definition: equationdetect.h:48
PTIsTextType
bool PTIsTextType(PolyBlockType type)
Definition: publictypes.h:81
tesseract::ColPartition::SetPartitionType
void SetPartitionType(int resolution, ColPartitionSet *columns)
Definition: colpartition.cpp:973
tesseract::EquationDetect::cp_seeds_
GenericVector< ColPartition * > cp_seeds_
Definition: equationdetect.h:262
tesseract::Tesseract::pix_binary
Pix * pix_binary() const
Definition: tesseractclass.h:200
TBOX::left
int16_t left() const
Definition: rect.h:71
tesseract::ColPartitionGrid
Definition: colpartitiongrid.h:32
tesseract::EquationDetect::SearchNNVertical
ColPartition * SearchNNVertical(const bool search_bottom, const ColPartition *part)
Definition: equationdetect.cpp:1412
tesseract::ColPartition::IsVerticalType
bool IsVerticalType() const
Definition: colpartition.h:441
PT_FLOWING_TEXT
Definition: capi.h:109
GenericVector::clear
void clear()
Definition: genericvector.h:857
TBOX::right
int16_t right() const
Definition: rect.h:78
tesseract::EquationDetect::InsertPartAfterAbsorb
void InsertPartAfterAbsorb(ColPartition *part)
Definition: equationdetect.cpp:512
tesseract::EquationDetect::~EquationDetect
~EquationDetect() override
Definition: equationdetect.cpp:121
tesseract::ColPartition::Absorb
void Absorb(ColPartition *other, WidthCallback cb)
Definition: colpartition.cpp:638
tprintf
DLLSYM void tprintf(const char *format,...)
Definition: tprintf.cpp:34
GenericVector::binary_search
int binary_search(const T &target) const
Definition: genericvector.h:252
BSTT_ITALIC
Definition: blobbox.h:97
tesstrain_utils.type
type
Definition: tesstrain_utils.py:141
classify.h
tesseract::Classify::classify_integer_matcher_multiplier
int classify_integer_matcher_multiplier
Definition: classify.h:505
tesseract::EquationDetect::SetResolution
void SetResolution(const int resolution)
Definition: equationdetect.cpp:127
UNICHARSET::id_to_unichar
const char * id_to_unichar(UNICHAR_ID id) const
Definition: unicharset.cpp:290
tesseract::CCUtil::imagebasename
STRING imagebasename
Definition: ccutil.h:54
BLOBNBOX::cblob
C_BLOB * cblob() const
Definition: blobbox.h:267
PolyBlockType
PolyBlockType
Definition: publictypes.h:52
tesseract::EquationDetect::IsMathBlockSatellite
bool IsMathBlockSatellite(ColPartition *part, GenericVector< ColPartition * > *math_blocks)
Definition: equationdetect.cpp:1358
GenericVector::sort
void sort()
Definition: genericvector.h:1102
tesseract::ColPartition::CopyButDontOwnBlobs
ColPartition * CopyButDontOwnBlobs()
Definition: colpartition.cpp:1758
GenericVector::size
int size() const
Definition: genericvector.h:71
tesseract::EquationDetect::CheckSeedDensity
bool CheckSeedDensity(const float math_density_high, const float math_density_low, const ColPartition *part) const
Definition: equationdetect.cpp:1001
tesseract::OEM_TESSERACT_ONLY
Definition: publictypes.h:266
BSTT_NONE
Definition: blobbox.h:96
tesseract::EquationDetect::CheckSeedNeighborDensity
bool CheckSeedNeighborDensity(const ColPartition *part) const
Definition: equationdetect.cpp:1292
tesseract::EquationDetect::IdentifyBlobsToSkip
void IdentifyBlobsToSkip(ColPartition *part)
Definition: equationdetect.cpp:310
search
LIST search(LIST list, void *key, int_compare is_equal)
Definition: oldlist.cpp:202
colpartitiongrid.h
kBlnBaselineOffset
const int kBlnBaselineOffset
Definition: normalis.h:24
tesseract::GridBase::GridCoords
void GridCoords(int x, int y, int *grid_x, int *grid_y) const
Definition: bbgrid.cpp:52
TBOX::x_gap
int x_gap(const TBOX &box) const
Definition: rect.h:224
tesseract::GridSearch::NextFullSearch
BBC * NextFullSearch()
Definition: bbgrid.h:675
BSTT_COUNT
Definition: blobbox.h:102
TBOX
Definition: rect.h:33